【题目】微信是现代生活信息交流的重要工具,随机对使用微信的人进行统计,得到如下数据统计表,每天使用微信时间在两小时以上的人被定义为“微信依赖”,不超过两小时的人被定义为“非微信依赖”,已知“非微信依赖”与“微信依赖”人数比恰为.
使用微信时间(单位:小时) | 频数 | 频率 |
5 | 0.05 | |
15 | 0.15 | |
15 | 0.15 | |
30 | 0.30 | |
合计 | 100 | 1.00 |
(1)确定的值;
(2)为进一步了解使用微信对自己的日常工作和生活是否有影响,从“微信依赖”和“非微信依赖”人中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查,设选取的人中“微信依赖”的人数为,求的分布列;
(3)求选取的人中“微信依赖”至少人的概率.
【答案】(1);(2)分布列见详解;(3).
【解析】
(1)根据样本容量以及频率之和为,结合“非微信依赖”与“微信依赖”人数比恰为,列出方程组,即可求得未知数;
(2)先计算出10人中微信依赖和非微信依赖的人数,再求得的取值,求得其概率,即可解得.
(3)根据(2)中所求分布列,即可容易求得.
(1)由题可知非微信依赖人数为人,微信依赖人数为40人,
故可得;则;
人,则.
(2)根据题意,10人中非微信依赖人数为人;微信依赖人数为人;
则容易知,且其服从超几何分布,
故可得,,
,;
故得分布列如下所示:
(3)由题可知选取的人中“微信依赖”至少人的概率为
由(2)中分布列可得.
故选取的人中“微信依赖”至少人的概率为.
科目:高中数学 来源: 题型:
【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)求出易倒伏玉米茎高的中位数;
(2)根据茎叶图的数据,完成下面的列联表:
抗倒伏 | 易倒伏 | |
矮茎 | ||
高茎 |
(3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
附:,
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(,x∈R)的图象与x轴交点的横坐标构成一个公差为的等差数列,把函数f(x)的图象沿x轴向左平移个单位,横坐标伸长到原来的2倍得到函数g(x)的图象,则下列关于函数g(x)的命题中正确的是( )
A.函数g(x)是奇函数
B.g(x)的图象关于直线对称
C.g(x)在上是增函数
D.当时,函数g(x)的值域是[0,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:(),其上一点到的焦点的距离为4.
(Ⅰ)求抛物线的方程;
(Ⅱ)过点的直线与抛物线分別交于,两点(点,均在轴的上方),若的面积为4,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高二年级学生中随机抽取60名学生,将其期中考试的政治成绩(均为整数)分成六段: , , ,…后得到如下频率分布直方图.
(1)根据频率分布直方图,估计该校高二年级学生期中考试政治成绩的平均分、众数、中位数;(小数点后保留一位有效数字)
(2)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则各分数段抽取的人数分别是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.
(1)根据题意,请将下面的列联表填写完整;
选择“西游传说” | 选择“千古蝶恋” | 总计 | |
成年人 | |||
未成年人 | |||
总计 |
(2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.
附参考公式与表:().
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接“五一”节的到来,某单位举行“庆五一,展风采”的活动.现有6人参加其中的一个节目,该节目由两个环节可供参加者选择,为增加趣味性,该单位用电脑制作了一个选择方案:按下电脑键盘“Enter”键则会出现模拟抛两枚质地均匀骰子的画面,若干秒后在屏幕上出现两个点数和,并在屏幕的下方计算出的值.现规定:每个人去按“Enter”键,当显示出来的小于时则参加环节,否则参加环节.
(1)求这6人中恰有2人参加该节目环节的概率;
(2)用分别表示这6个人中去参加该节目两个环节的人数,记,求随机变量的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com