精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中, 平面 .过的平面交于点,交于点.

(l)求证: 平面

(Ⅱ)求证:

(Ⅲ)记四棱锥的体积为,三棱柱的体积为.若,求的值.

【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ) .

【解析】试题分析:(l)因为平面由线面垂直的性质可得根据菱形的性质可得利用线面垂直的判定定理可得平面() 平面,所以 平面利用线面平行的性质定理可得() 记三棱锥的体积为,三棱柱的体积为先证明,所以 结合 可得 而三棱柱与三棱柱等高由此得

试题解析:(1) 因为 平面所以

在三棱柱中,因为 ,所以 四边形为菱形,

所以 所以 平面

2)在 三棱柱中,

因为 平面所以 平面

因为 平面平面所以

3记三棱锥的体积为,三棱柱的体积为.

因为三棱锥与三棱柱同底等高,

所以 , 所以 .

因为 , 所以 . 因为 三棱柱与三棱柱等高,

所以 △的面积之比为, 所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知两个正方形ABCDDCEF不在同一平面内,MN分别为ABDF的中点.

(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;

(2)用反证法证明:直线MEBN是两条异面直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·泰安模拟)如图,在正四棱柱ABCDA1B1C1D1中,EAD的中点,FB1C1的中点.

(1)求证:A1F∥平面ECC1

(2)在CD上是否存在一点G,使BG⊥平面ECC1?若存在,请确定点G的位置,并证明你的结论,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“中华好诗词”节目的播出,掀起了全民诵读传统诗词经典的热潮.某大学社团为调查大学生对于“中华诗词”的喜好,在该校随机抽取了40名学生,记录他们每天学习“中华诗词”的时间并整理得到如下频率分布直方图:

根据学生每天学习“中华诗词”的时间,可以将学生对于“中华诗词”的喜好程度分为三个等级 :

学习时间

(分钟/天)

等级

一般

爱好

痴迷

()的值

(Ⅱ) 从该大学的学生中随机选出一人,试估计其“爱好”中华诗词的概率

(Ⅲ) 假设同组中的每个数据用该组区间的右端点值代替,试估计样本中40名学生每人每天学习“中华诗词”的时间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市高中全体学生参加某项测评,按得分评为两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为的学生中有40%是男生,等级为的学生中有一半是女生.等级为的学生统称为类学生,等级为的学生统称为类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图,

类别

得分(

表1

(I)已知该市高中学生共20万人,试估计在该项测评中被评为类学生的人数;

(Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名类学生”的概率;

(Ⅲ)在这10000名学生中,男生占总数的比例为51%, 类女生占女生总数的比例为 类男生占男生总数的比例为,判断的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直角梯形中, ,等腰梯形中, ,且平面平面.

(1)求证: 平面

(2)若与平面所成角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点, 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线.

(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍、2倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,圆的极坐标方程为: .若以极点为原点,极轴所在直线为轴建立平面直角坐标系.

(Ⅰ)求圆的参数方程;

(Ⅱ)在直角坐标系中,点是圆上动点,试求的最大值,并求出此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,圆的方程为

(1)写出直线的普通方程和圆的直角坐标方程;

(2)设点,直线与圆相交于两点,求的值.

查看答案和解析>>

同步练习册答案