精英家教网 > 高中数学 > 题目详情
函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是

A.5,-15              B.5,4              C.-4,-15            D.5,-16

解析:y ′=6x2-6x-12=6(x-2)(x+1),令y ′=0,得x=2或x=-1(舍).

检验知,当x=2时,y极小值=-15.

f(0)=5,f(3)=2×27-3×9-12×3+5=-4,

ymax=5,ymin=-15.

答案:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于三次函数f(x)=ax3+bx2+cx+d,定义y=f″(x)是函数y=f′(x)的导函数.若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心.根据这一发现,对于函数g(x)=2x3-6x2+3x+2+2013sin(x-1),则g(-2011)+g(-2010)+…+g(2012)+g(2013)的值为
4025
4025

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山二模)对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点,且有如下零点存在定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b<0,那么,函数y=f(x)在区间(a,b)内有零点.给出下列命题:
①若函数y=f(x)有反函数,则f(x)有且仅有一个零点;
②函数f(x)=2x3-3x+1有3个零点;
③函数y=
x26
和y=|log2x|的图象的交点有且只有一个;
④设函数f(x)对x∈R都满足f(3+x)=f(3-x),且函数f(x)恰有6个不同的零点,则这6个零点的和为18;
其中所有正确命题的序号为
②④
②④
.(把所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:044

求函数y=2x3-3x+4的导数.?

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2x3-3x+4的导数.?

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=2x3-3x+4的导数.?

查看答案和解析>>

同步练习册答案