【题目】近年来,国家相关政策大力鼓励创新创业种植业户小李便是受益者之一,自从2017年毕业以来,其通过自主创业而种植的某种农产品广受市场青睐,他的种植基地也相应地新增加了一个平时小李便带着部分员工往返于新旧基地之间进行科学管理和经验交流,新旧基地之间开车单程所需时间为,由于不同时间段车流量的影响,现对50名员工往返新旧基地之间的用时情况进行统计,结果如下:
(分钟) | 30 | 35 | 40 | 45 | 50 |
频数(人) | 10 | 20 | 10 | 5 | 5 |
(1)若有50名员工参与调查,现从单程时间在35分钟,40分钟,45分钟的人员中按分层抽样的方法抽取7人,再从这7人中随机抽取3人进行座谈,用表示抽取的3人中时间在40分钟的人数,求的分布列和数学期望;
(2)某天,小李需要从旧基地驾车赶往新基地召开一个20分钟的紧急会议,结束后立即返回旧基地.(以50名员工往返新旧基地之间的用时的频率作为用时发生的概率)
①求小李从离开旧基地到返回旧基地共用时间不超过110分钟的概率;
②若用随机抽样的方法从旧基地抽取8名骨干员工陪同小李前往新基地参加此次会议,其中有名员工从离开旧基地到返回旧基地共用时间不超过110分钟,求随机变量的方差.
【答案】(1)分布列见解析,;(2)①0.97;②
【解析】
(1)首先根据分层抽样确定人中时间在分钟的人数为人,所以的可能取值为0,1,2,再分别计算对应的概率,列出分布列,计算数学期望即可.
(2)①首先求出路上用时超过分钟的概率,再结合对立事件的概率即可得到答案.②由题知服从二项分布,利用二项分布的性质计算方差即可.
(1)抽样比等于.
按分层抽样的方法抽取的7人中,单程时间在35分钟,
40分钟,45分钟的人员分别有4人,2人,1人.
的可能取值为0,1,2,
所以,,,
所以的分布列为
.
(2)①设分别表示往返所需时间,的取值相互独立,且与的分布列相同.
设事件表示“小李共用时间不超过110分钟”,
由于会议时间为20分钟,所以事件对应于“小李在路途中的时间不超过90分钟”,
故,
根据表中数据知:满足条件的有:,,,
所以,
则.
②设在抽取的8名骨干员工中,从离开旧基地到返回旧基地
共用时间不超过110分钟的人数为,服从二项分布,
所以.
科目:高中数学 来源: 题型:
【题目】函数y=f(x),x∈[1,+∞),数列{an}满足,
①函数f(x)是增函数;
②数列{an}是递增数列.
写出一个满足①的函数f(x)的解析式______.
写出一个满足②但不满足①的函数f(x)的解析式______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:的焦点为F,Q是抛物线上的一点,.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点作直线l与抛物线C交于M,N两点,在x轴上是否存在一点A,使得x轴平分?若存在,求出点A的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,已知PA⊥平面ABCD,△ABC为等边三角形,PA=2AB=2,AC⊥CD,PD与平面PAC所成角的余弦值为.
(1)证明:平面PAD;
(2)点M为PB上一点,且,试判断点M的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,“无桩有站”模式的公共自行车日益普及,即传统自行车加装智能锁,实现扫码租车及刷卡租车、某公司量产了甲、乙两种款式的公共自行车并投人使用,为了调查消费者对两种自行车的租赁情况,现随机抽取这两种款式的自行车各100辆,分别统计了每辆车在某周内的出租次数,得到甲、乙两种自行车这周内出租次数的频数分布表:
甲 | |||||
出租次数(单位:次) | |||||
频数 | 10 | 10 | 60 | 15 | 5 |
乙 | |||||
出租次数(单位:次) | |||||
频数 | 20 | 25 | 25 | 10 | 20 |
(1)根据频数分布表,完成上面频率分布直方图,并根据频率分布直方图比较甲、乙两种自行车这周内出租次数方差的大小(不必说明理由);
(2)如果两种自行车每次出租获得的利润相同,该公司决定大批量生产其中一种投入某城市使用,请你根据所学的统计知识,给出建议应该生产哪一种自行车,并说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某连锁餐厅新店开业,打算举办一次食品交易会,招待新老顾客试吃.项目经理通过查阅最近次食品交易会参会人数(万人)与餐厅所用原材料数量(袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数(万人) | |||||
原材料(袋) |
(1)根据所给组数据,求出关于的线性回归方程;
(2)已知购买原材料的费用(元)与数量(袋)的关系为,投入使用的每袋原材料相应的销售收入为元,多余的原材料只能无偿返还,据悉本次交易大会大约有万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式:,.
参考数据:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.
(1)若直线与圆相切,求的值;
(2)直线与圆相交于不同两点,,线段的中点为,求点的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某小区为了加强对“新型冠状病毒”的防控,确保居民在小区封闭期间生活不受影响,小区超市采取有力措施保障居民正常生活物资供应.为做好甲类生活物资的供应,超市对社区居民户每天对甲类生活物资的购买量进行了调查,得到了以下频率分布直方图.
(1)从小区超市某天购买甲类生活物资的居民户中任意选取5户.
①若将频率视为概率,求至少有两户购买量在(单位:)的概率是多少?
②若抽取的5户中购买量在(单位:)的户数为2户,从5户中选出3户进行生活情况调查,记3户中需求量在(单位:)的户数为,求的分布列和期望;
(2)将某户某天购买甲类生活物资的量与平均购买量比较,当超出平均购买量不少于时,则称该居民户称为“迫切需求户”,若从小区随机抽取10户,且抽到k户为“迫切需求户”的可能性最大,试求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com