精英家教网 > 高中数学 > 题目详情
10.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:

则第7个图案中有白色地面砖30块.

分析 由图可知:a1=6,a2=10,a3=14,…,可得数列{an}是等差数列,利用通项公式即可得出.

解答 解:由图可知:a1=6,a2=10,a3=14,…,
可得数列{an}是等差数列,首项为6,公差为4.
∴an=6+4(n-1)=4n+2.
∴a7=4×7+2=30.
故答案为:30.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.求下列各式的值.
(1)($\frac{9}{16}$)${\;}^{\frac{1}{2}}$+$\root{3}{1000}$-($\frac{64}{27}$)${\;}^{-\frac{1}{3}}$+3•e0;       
(2)$\frac{lg\sqrt{27}+lg8-{log}_48}{\frac{1}{2}lg0.3+lg2}$;
(3)lg25+lg2•lg50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象如图所示,
(Ⅰ)请画出函数f(x)在y轴右侧的图象,并写出函数f(x),x∈R的单调减区间;
(Ⅱ)写出函数f(x),x∈R的解析式;
(Ⅲ)若函数g(x)=f(x)-2ax+2,x∈[1,2],求函数g(x)的最大值h(a)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,当k为何值时,
(1)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$-k$\overrightarrow{b}$垂直;
(2)|k$\overrightarrow{a}$-2$\overrightarrow{b}$|取得最小值?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义:将圆心不同的两圆方程C1:(x-a12+(y-b12=r12与C2:(x-a22+(y-b22=r22两边分别相减所得的直线m称为两圆的根轴.
(1)求证:“根轴”所在直线m与两圆圆心的连线垂直;
(2)求证:“根轴”所在直线m上在圆外部分的点到两圆的切线长相等;
(3)利用上述方法判断,对于圆C:x2+y2-2x+4y-4=0来说,是否存在斜率为1的直线l,使以l被圆C截得的弦AB为直径的圆,经过原点?若存在,写出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线y=kx与双曲线4x2-y2=16不可能(  )
A.相交B.只有一个交点C.相离D.有两个公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设点P是双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上任一点,过P的直线与两渐近线分别交P1P2,且$\overrightarrow{{P}_{1}P}=2\overrightarrow{P{P}_{2}}$,双曲线离心率e=$\frac{\sqrt{13}}{2}$,设O为坐标原点,△OP1P2的面积为27,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示的是一串黑白相间排列的珠子,若按这种规律排列下去,那么第39颗珠子的颜色是(  )
A.白色B.黑色C.白色的可能性大D.黑色的可能性大

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R),则“$φ=\frac{π}{2}$”是“f(x)是偶函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案