精英家教网 > 高中数学 > 题目详情
11.若直线l的一个方向向量$\overrightarrow a=(2,2,-2)$,平面α的一个法向量为$\overrightarrow b=(1,1,-1)$,则(  )
A.l∥αB.l⊥αC.l?αD.A、C都有可能

分析 直线l的一个方向向量$\overrightarrow a=(2,2,-2)$,平面α的一个法向量为$\overrightarrow b=(1,1,-1)$,可得$\overrightarrow{a}$=2$\overrightarrow{b}$,即可判断出结论.

解答 解:∵直线l的一个方向向量$\overrightarrow a=(2,2,-2)$,
平面α的一个法向量为$\overrightarrow b=(1,1,-1)$,
则$\overrightarrow{a}$=2$\overrightarrow{b}$,∴l⊥α.
故选:B.

点评 本题考查了向量共线定理、线面垂直的判定与性质定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.今年“五一”期间,某公园举行免费游园活动,免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…按照这种规律进行下去,到上午11时公园内的人数是(  )
A.212-57B.211-47C.210-38D.29-30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.化简:
(1)$\frac{si{n}^{2}35°-\frac{1}{2}}{cos10°cos80°}$        
(2)($\frac{1}{tan\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{sin2α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.有一块半径为2的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是半圆的直径,上底CD的端点在半圆上.
(1)若这个梯形上底为CD=2a,求它的腰长x;
(2)求出这个梯形的周长y关于腰长x的函数解析式,并指出它的定义域;
(3)求这个梯形周长的最大值,并求出当它最大时,梯形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a,b∈R,那么a+b≠0的一个必要而不充分条件是(  )
A.ab>0B.a>0且b>0C.a+b>3D.a≠0或b≠0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知椭圆$\frac{y^2}{5}+{x^2}=1$与抛物线x2=ay有相同的焦点F,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=x-y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题p:?x∈[0,2π],sinx≤1,则(  )
A.¬p:?x∈[0,2π],sinx≥1B.¬p:?x∈[-2π,0],sinx>1
C.¬p:?x∈[0,2π],sinx>1D.¬p:?x∈[-2π,0],sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=xne-x,则其导数y'=(  )
A.nxn-1e-xB.xne-xC.2xne-xD.(n-x)xn-1e-x

查看答案和解析>>

同步练习册答案