精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(x-1)+
12
x2
-ax,a>0.
(I)若f(x)存在单调递减区间,求a的取值范围;
(Ⅱ)记f(x)在[2,+∞)的最小值为f(t),求t的值.
分析:(I)由函数的解析式,易求出函数的定义域和导函数的解析式,根据定义域和导函数的解析式,我们对a进行分类讨论,易得到f(x)存在单调递减区间时,a的取值范围;
(Ⅱ)利用导函数我们可以探讨函数的单调性,从而得到函数在[2,+∞)的最小值为f(t),继而得到t的取值.
解答:解:(I)f(x)的定义域为(1,+∞),
f'(x)=
1
x-1
+x-a=
1
x-1
+(x-1)+1-a≥2+1-a=3-a
当且仅当x=2时f′(x)取最小值3-a.
当a>3时,3-a<0,
f(x)存在单调递减区间;
当a≤3时,3-a≥0,不存在使得f′(x)<0的区间
综上,a的取值范围是(3,+∞);
(II)f'(x)=
x2-(a+1)x+a+1
x-1
,对于分子,
△=(a+1)2=4(a+1)=(a+1)(a-3),
由(I)可知,当0<a≤3时,f(x)在(1,+∞)单调递增;
当a>3时,△>0,由x2-(a+1)x+a+1=0,
得x2=
a+1-
(a+1)(a-3)
2
x2=
a+1+
(a+1)(a-3)
2

由x1-2=
a-3-
(a+1)(a-3)
2
<0x2-2=
a-3+
(a+1)(a-3)
2
>0
知x1<2<x2当x∈(2,x2)时,f'(x)<0,f(x)单调递减
当x∈(x2,+∞)时,f'(x)>0,f(x)单调递增.
综上,当0<a≤3时,t=2;当a>3时,t=
a+1+
a2-2a-3
2
点评:本题考查了函数的单调性及单调区间和函数的最值,在探讨函数的最值时我们常以导数作为工具,先研究函数的单调性,然后在求其最值.本题是个中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案