精英家教网 > 高中数学 > 题目详情
函数f(x)=
lg(1-2x)
的定义域为(  )
A、(-∞,0]
B、(-∞,0)
C、(0,
1
2
D、(-∞,
1
2
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据函数f(x)的解析式,列出不等式,求出解集即可.
解答: 解:∵函数f(x)=
lg(1-2x)

∴lg(1-2x)≥0,
即1-2x≥1,
解得x≤0;
∴f(x)的定义域为(-∞,0].
故选:A.
点评:本题考查了根据函数的解析式,求函数定义域的问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,满足(1-q)Sn+qan=1,且q(q-1)≠0.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若S3,S9,S6成等差数列,求证:a2,a8,a5成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且对任意的实数x1≠x2(x1>0,x2>0)时,有
f(x1)-f(x2)
x1-x2
>0成立,如果实数t满足f(lnt)-f(1)≤f(1)-f(ln
1
t
),那么t的取值范围是(  )
A、(0,e]
B、[0,
1
e
]
C、[1,e]
D、[
1
e
,e]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点G是△ABC的外心,
GA
GB
GC
是三个单位向量,且2
GA
+
AB
+
AC
=
0
,如图所示,△ABC的顶点B,C分别在x轴的非负半轴和y轴的非负半轴上移动,O是坐标原点,则|
OA
|的最大值为(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域内的函数f(x),若存在非零实数x0,使函数f(x)在(-∞,x0)和(x0,+∞)上均有零点,则称x0为函数f(x)的一个“给力点”.现给出下列四个函数:
①f(x)=3x-1+
1
2

②f(x)=2+lg|x-1|;
③f(x)=
x3
3
-x-1;
④f(x)=x2+ax-1(a∈R),则存在“给力点”的函数是(  )
A、①②B、②③C、③④D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=k(x-m)(k,m∈R且k≠0)与圆x2+y2=1交于A,B两点,记以Ox为始边(O为坐标原点),OA,OB为终边的角分别为α,β,则|sin(α+β)|的值(  )
A、只与m有关
B、只与k有关
C、与m,k都有关
D、与m,k都无有关

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax+by-
2
=0(a>l,b>1)被圆x2+y2-2x-2y-2=0截得的弦长为2
3
,则ab的最小值为(  )
A、
2
-1
B、
2
+1
C、3-2
2
D、3+2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=cos(2x-
3
)+2cos2x.
(1)求f(x)的对称轴方程;
(2)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(
A
2
)=
1
2
,b+c=2,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD中,AB∥DC,且DC=2AB,若A(0,8),B(-4,0),C(5,-3),试求点D的坐标及梯形对角线交点M的坐标.

查看答案和解析>>

同步练习册答案