精英家教网 > 高中数学 > 题目详情
19.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},则M∩N等于(  )
A.{(0,1)}B.(0,1)C.[-1,+∞)D.[1,+∞)

分析 求出M中y的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.

解答 解:由M中y=x2+1≥1,即M=[1,+∞),
由N中y=ln(x+1)+1,即N=(-∞,+∞),
则M∩N=[1,+∞),
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆C:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$,F1,F2分别为椭圆的左右焦点,A,B分别为椭圆的左右顶点,点P为椭圆上异于A,B的动点.
(1)求证:直线PA、PB的斜率之积为定值;
(2)设D(1,0),求|PD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若中心是原点,对称轴是坐标轴的椭圆过A(4,1),B(2,2)两点,则它的方程是$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=-4cosθ.
(1)求曲线C1与C2交点的极坐标;
(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}对任意m,n∈N*,满足am+n=am•an,且a3=8,则a1=(  )
A.2B.1C.±2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数f(x)=ln(1+x)+ln(1-x),则f(x)是(  )
A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}\right.$(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程$ρ=2cos(θ+\frac{π}{4})$.
(Ⅰ)求曲线C的直角坐标方程和直线l的普通方程;
(Ⅱ)设M为曲线C上任意一点,求x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+2,
(1)当a=1时求f(x)的最小值;
(2)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)为一次函数,且f[f (x)]=4x+3,则f (x)的解析式f(x)=2x+1,或f(x)=-2x-3.

查看答案和解析>>

同步练习册答案