精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的偶函数和奇函数,且.

(1)求函数的解析式;

(2)设函数,记 .探究是否存在正整数,使得对任意的,不等式恒成立?若存在,求出所有满足条件的正整数的值;若不存在,请说明理由.

【答案】(1)见解析;(2)

【解析】

(1)已知,结合函数的奇偶性可得,解方程组即可得函数解析式;(2)由函数奇偶性的性质可知为奇函数,图象关于对称,则的图象关于点中心对称,利用对称性可得,然后利用恒成立问题解即可.

(1)

函数为偶函数,为奇函数,

.

(2)易知为奇函数,其函数图象关于中心对称,

函数的图象关于点中心对称,

即对任意的成立.

.

两式相加,得

.

.

.

,即.

.

恒成立.

.

上单调递增.

上单调递增.

.

又已知.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】宁德市某汽车销售中心为了了解市民购买中档轿车的意向,在市内随机抽取了100名市民为样本进行调查,他们月收入(单位:千元)的频数分布及有意向购买中档轿车人数如下表:

月收入

[3,4)

[4,5)

[5,6)

[6,7)

[7,8)

[8,9)

频数

6

24

30

20

15

5

有意向购买中档轿车人数

2

12

26

11

7

2

将月收入不低于6千元的人群称为“中等收入族”,月收入低于6千元的人群称为“非中等收入族”.

(Ⅰ)在样本中从月收入在[3,4)的市民中随机抽取3名,求至少有1名市民“有意向购买中档轿车”的概率.

(Ⅱ)根据已知条件完善下面的2×2列联表,并判断有多大的把握认为有意向购买中档轿车与收入高低有关?

非中等收入族

中等收入族

总计

有意向购买中档轿车人数

40

无意向购买中档轿车人数

20

总计

100

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级的一次月考成绩中随机抽取了名学生的成绩(满分分),这名学生的成绩都在内,按成绩分为五组,得到如图所示的频率分布直方图.

1)求图中的值;

2)假设同组中的每个数据都用该组区间的中点值代替,估计该校高一年级本次考试成绩的平均分;

3)用分层抽样的方法从成绩在内的学生中抽取人,再从这人中随机抽取名学生进行调查,求月考成绩在内至少有名学生被抽到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点在圆上,直线上圆在点处的切线,过点作圆的切线与交于点.

(Ⅰ)证明为定值,并求动点的轨迹的方程;

(Ⅱ)设过点的直线与曲线分别交于,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数,满足为奇函数,且,则不等式的解集为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线上,直线的方程为

(1)求圆的方程;

(2)证明:直线与圆恒相交;

(3)求直线被圆截得的弦长的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在图1所示的梯形中,于点,且.将梯形沿对折,使平面平面,如图2所示,连接,取的中点.

(1)求证:平面平面

(2)在线段上是否存在点,使得直线平面?若存在,试确定点的位置,并给予证明;若不存在,请说明理由;

(3)设,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )

2017 2016 2015 2014……6 5 4 3 2 1

4033 4031 4029…………11 9 7 5 3

8064 8060………………20 16 12 8

16124……………………36 28 20

………………………

A. B. C. D.

查看答案和解析>>

同步练习册答案