精英家教网 > 高中数学 > 题目详情

如图,在等腰三角形ABC中,AB=AC,O为AB上一点,以O为圆心、OB长为半径的圆交BC于D,DE⊥AC交AC于E.
(1)求证:DE是⊙O的切线;
(2)若⊙O与AC相切于F,AB=AC=5cm,sinA=数学公式,求⊙O的半径的长.

证明:(1)连接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC.
又DE⊥AC,
∴DE⊥OD.
∴DE是⊙O的切线.

(2)解:⊙O与AC相切于F点,连接OF,
则:OF⊥AC.
在Rt△OAF中,sinA=
∴OA=OF,
又AB=OA+OB=5,

∴OF=cm.
分析:(1)根据切线的判定定理,只需连接OD,证明OD⊥DE.已知DE⊥AC,故利用同位角相等,两条直线平行就可证明;
(2)根据切线的性质定理,连接过切点的半径,运用锐角三角函数的定义,用半径表示OA的长,再根据AB的长列方程求解.
点评:此题主要考查了圆的切线的性质定理的证明,综合运用了切线的判定和性质,熟练运用锐角三角函数的定义表示出两条边之间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在等腰直角三角形ABC中,则AM<AC的概率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且
AE
=m
AB
AF
=n
AC
,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则|
MN
|
的最小值为
7
7
7
7

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三高考模拟卷(二)理科数学试卷(解析版) 题型:解答题

如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=

(1)当时,求证:AO⊥平面BCD;

(2)当二面角的大小为时,求二面角的正切值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且数学公式数学公式,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则数学公式的最小值为________.

查看答案和解析>>

科目:高中数学 来源:2013年江苏省苏北三市高考数学一模试卷(宿迁、徐州、淮安)(解析版) 题型:填空题

如图,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F分别是边AB,AC上的点,且,其中m,n∈(0,1).若EF,BC的中点分别为M,N,且m+4n=1,则的最小值为   

查看答案和解析>>

同步练习册答案