精英家教网 > 高中数学 > 题目详情
如图,在棱长为1的正方体中.

⑴求异面直线所成的角;
⑵求证:平面平面
(Ⅰ). (Ⅱ)利用线面垂直证明面面垂直 

试题分析:(Ⅰ)如图,,则就是异面直线所成的角.
连接,在中,,则
因此异面直线所成的角为

(Ⅱ) 由正方体的性质可知 , 故
正方形中,
,∴ ;     
,∴平面. 
点评:以正方体为载体考查立体几何中的线面、面面、点面位置关系或体积是高考的亮点,掌握其判定性质及定理,是解决此类问题的关键
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱锥中,底面是边长为2的正方形,侧棱,的中点,是侧棱上的一动点。

(1)证明:
(2)当直线时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥的底面是直角三角形,且平面是线段的中点,如图所示.

(Ⅰ)证明:平面
(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科)(本小题满分12分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.

(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,平面,且,给出四个命题:   ①若,则;②若,则;③若,则∥m;④若∥m,则.其中真命题的个数是
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是(  )
A.90°  B.60° 
C.45°  D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有以下四个命题:  其中真命题的序号是                      (  )
①若,则;②若,则
③若,则;   ④若,则
①②     ③④     ①④        ②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设、是两条不同的直线,是一个平面,则下列命题正确的是(  )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直线,是两个不同的平面,下列命题成立的是(    )
A.若,则
B.若,则
C.若, 则
D.若,则

查看答案和解析>>

同步练习册答案