【题目】已知函数 (a∈R,e为自然对数的底数),,其中在x=0处的切线方程为y=bx.
(1)求a,b的值;
(2)求证:;
(3)求证:有且仅有两个零点.
【答案】(1),;(2)证明见解析;(3)证明见解析
【解析】
(1)求导得到,,,解得答案.
(2)先证明,,再证明,得到,得到答案.
(3)求导得到,确定导函数单调递增,故存在使,故函数在上单调递减,在上单调递增,根据零点存在定理得到答案.
(1),,
故,,故,.
(2)先证明,设,则,函数在上单调递减,在上单调递减,故,故恒成立.
再证明,设,则,
函数在上单调递增,在上单调递减,故,
故.
故,
,
当时,,;当时,易知,
函数为偶函数,故恒成立,故.
故,得证.
(3),则,
,恒成立,
故单调递增,,,
故存在使,故函数在上单调递减,在上单调递增.
,当时,,
故函数在上有唯一零点,在上有唯一零点,故有且仅有两个零点.
科目:高中数学 来源: 题型:
【题目】给出下面类比推理:
①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;
②“(a+b)c=ac+bc(c≠0)”类比推出“ (c≠0)”;
③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;
④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.
其中结论正确的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以椭圆的2个焦点与1个短轴端点为顶点的三角形的面积为2。
(1)求椭圆的方程;
(2)如图,斜率为k的直线l过椭圆的右焦点F,且与椭圆交与A,B两点,以线段AB为直径的圆截直线x=1所得的弦的长度为,求直线l的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,.
(Ⅰ)求“抽取的卡片上的数字满足”的概率;
(Ⅱ)求“抽取的卡片上的数字,,不完全相同”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次数学考试中,小江的成绩在90分以上的概率是0.25,在的概率是0.48,在的概率是0.11,在的概率是0.09,在60分以下的概率是0.07.计算:
(1)小江在此次数学考试中取得80分及以上的概率;
(2)小江考试及格(成绩不低于60分)的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com