精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上的点到焦点的距离为.

1)求的值;

2)如上图,已知动线段的右边)在直线上,且,现过的切线,取左边的切点,过的切线,取右边的切点为,当,求点的横坐标的值.

【答案】1;(2.

【解析】

1)求出抛物线的准线方程,利用抛物线的定义把点到焦点的距离转化为到准线的距离,由此可求的值;

2)设出的坐标,利用导数求出过的切线方程,由表示出的坐标,把代入切线方程后求出的坐标,由两点式写出所在直线的斜率,由斜率等于,即可求出的值.

1)抛物线,准线方程为:

到焦点的距离为

因此,抛物线的方程为

2)设

,所以,直线的斜率为

切线的方程为,即

同理可得切线的方程为:

由于动线段的右边)在直线上,且

故可设

将点代入切线的方程,得,即

同理可得

,当时,,得

(舍去),.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥中,.

1)求证:

2)若点 上一点,且,求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中,是自然对数的底数.

1)若曲线在点处的切线为,求的值;

2)求函数的极大值;

3)设函数,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次知识竞赛规则如下:在主办方预设的7个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.7,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率等于(

A.0.07497B.0.92503C.0.1323D.0.6174

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0),F1F2为椭圆的左右焦点,过F2的直线交椭圆与AB两点,∠AF1B90°2,则椭圆的离心率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,,沿矩形对角线BD折起形成四面体ABCD,在这个过程中,现在下面四个结论:①在四面体ABCD中,当时,;②四面体ABCD的体积的最大值为;③在四面体ABCD中,BC与平面ABD所成角可能为;④四面体ABCD的外接球的体积为定值.其中所有正确结论的编号为( )

A.①④B.①②C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机取一个由01构成的8位数,它的偶数位数字之和与奇数位数字之和相等的概率为____________ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左、右焦点分别为 为坐标原点, 是双曲线上在第一象限内的点,直线分别交双曲线左、右支于另一点 ,且,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】24届冬奥会将于202224日至222日在北京市和河北省张家口市联合举行,这是中国历史上第一次举办冬季奥运会.为了宣传冬奥会,让更多的人了解、喜爱冰雪项目,某校高三年级举办了冬奥会知识竞赛(总分100分),并随机抽取了名中学生的成绩,绘制成如图所示的频率分布直方图.已知前三组的频率成等差数列,第一组和第五组的频率相同.

)求实数的值,并估计这名中学生的成绩平均值;(同一组中的数据用该组区间的中点值作代表)

)已知抽取的名中学生中,男女生人数相等,男生喜欢花样滑冰的人数占男生人数的,女生喜欢花样滑冰项的人数占女生人数的,且有95%的把握认为中学生喜欢花样滑冰与性别有关,求的最小值.

参考数据及公式如下:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

同步练习册答案