精英家教网 > 高中数学 > 题目详情
11.已知命题p:函数f(x)=|cosx|的最小正周期为2π;命题q:?x,使2x>3x,则下列命题是真命题的是(  )
A.p∧qB.p∧(¬q)C.p∨(¬q)D.p∨q

分析 分别判断出p,q的真假,从而判断出复合命题的真假即可.

解答 解:命题p:函数f(x)=|cosx|的最小正周期为π,
故命题p是假命题;
命题q:?x,使2x>3x
故命题q是真命题,
故p∨q是真命题,
故选:D.

点评 本题考查了复合命题的判断,考查三角函数以及指数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知某鱼塘仅养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从鱼塘中捕出这两种鱼各1000条,给每条鱼做上不影响其存活的标记,然后放回鱼塘,待完全混合后,再每次从鱼塘中随机地捕出1000条,记录下其中有记号的鱼的数目,然后立即放回鱼塘中,这样的记录做了10次,并将记录获取的数据制作成如图所示的茎叶图
(I)根据茎叶图计算有记号的鲤鱼和鲫鱼的平均数;
(II)为了估计鱼塘中鱼的总重量,现按照(I)中的比例对100条鱼进行称重,所得称重鱼的重量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5],如图是按上述分组方法得到的频率分布直方图的一部分.

(1)若第二、三、四组鱼的条数成公差为7的等差数列,请将频率分布直方图补充完整;
(2)通过抽样统计,初步估计鱼塘里共有20000条鱼,使在(1)的条件下估计该鱼塘中鱼重量的众数及鱼的总重量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=ex-x-3(x>0)的零点所在的区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)=-3ex+(m2-1)x在(-∞,0]上恒为增函数,则m的取值范围是(  )
A.(-∞,-2]∪[2,+∞)B.[2,+∞)C.(-∞,-2]D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知三棱锥A-BCD中,AC=BD=BC=AD=$\sqrt{5}$,AB=DC=$\sqrt{2}$,则该三棱锥外接球的体积为$\sqrt{6}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.画出下列函数的简图.
(1)y=$\frac{x+1}{x}$;
(2)y=1-$\frac{1}{x-1}$.

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:解答题

已知复数.试求实数分别为什么值时,分别为:(1)实数;(2)虚数;(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知m∈R,设p:x1和x2是方程x2-ax-2=0的两个实根,不等式|m2-5m-3|≥|x1-x2|对任意的实数a∈[-1,1]恒成立,q:函数f(x)=x3+mx2+(m+$\frac{4}{3}$)x+6在R上有极值,若非p或非q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某高校在2015年的自主招生考试中随机抽取了100名学生的笔试成绩,按成绩分组:第一组[160,165),第二组[165,170),第三组[170,175),第四组[175,180),第五组[180,185)得到的频率分布直方图如图所示
(Ⅰ)根据频率分布直方图计算出样本数据的众数和中位数;(结果保留1位小数)
(Ⅱ)为了能选拔出最优秀的学生,学校决定在笔试成绩高的第三、四、五组中用分层抽样抽取6名学生进入第二轮面试,求第三、四、五组每组各抽取多少名学生进入第二轮面试.
( III)在(Ⅱ)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第四组至少有一名学生被甲考官面试的概率.

查看答案和解析>>

同步练习册答案