精英家教网 > 高中数学 > 题目详情
如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程及其右准线的方程;
(2)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由;
(3)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由.

【答案】分析:(1)m=1时,求出焦点坐标以及a,b 的值,写出椭圆方程.
(2)假设存在实数m,在△PF1F2中,|PF1|最长,|PF2|最短,令|F1F2|=2c=2m,则|PF1|=2m+1,|PF2|=2m-1,把P(m-1,4m(m-1))代入椭圆方程求出m值.
(3)依题意设直线l的方程为:x=ky+1,k∈R,联立{y2=4xx24+y23=1得点P的坐标为P(23,263).再由韦达定理可知点P可在圆内,圆上或圆外.
解答:解:(1)m=1时,抛物线C1:y2=4x,焦点为F2 (1,0). 由于椭圆离心率,c=1,
故 a=2,b=,故所求的椭圆方程为  .右准线方程为:x=4.
(2)∵C1:y2=4mx(m>0)的右焦点F2(m,0)
∴椭圆的半焦距c=m,又
∴椭圆的长半轴的长a=2m,短半轴的长
∴椭圆方程为
假设存在实数m,△PF1F2中的边长是连续自然数,则在△PF1F2中,|PF1|最长,|PF2|最短,
令|F1F2|=2c=2m,则|PF1|=2m+1,|PF2|=2m-1.
由抛物线的定义可得|PF2|=2m-1=xP-(-m),∴xP=m-1.
把P(m-1,4m(m-1))代入椭圆,解得m=3.
故存在实数m=3 满足条件.
(3)依题意设直线l的方程为:x=ky+1,k∈R
联立得点P的坐标为
将x=ky+1代入y2=4x得y2-4ky-4=0.
设A1(x1,y1)、A2(x2,y2),由韦达定理得y1+y2=4k,y1y2=-4.


=
=
∵k∈R,于是的值可能小于零,等于零,大于零.
即点P可在圆内,圆上或圆外.
点评:本题考查抛物线和椭圆的标准方程和简单性质,考查直线与椭圆的位置关系,同时考查向量知识的运用,综合性较强,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线c1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1、F2为焦点,离心率e=
12
的椭圆c2与抛物线c1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程;
(2)在(1)的条件下,直线l经过椭圆c2的右焦点F2,与抛物线c1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由;
(3)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的交点为P.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求抛物线方程;此时设⊙C1、⊙C2…⊙Cn是圆心在y2=4mx(m>0)上的一系列圆,它们的圆心纵坐标分别为a1,a2…an,已知a1=6,a1>a2>…>an>0,又⊙Ck(k=1,2,…,n)都与y轴相切,且顺次逐个相邻外切,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交地F1,焦点为F2,以F1、F2为焦点,离心率e=
12
的椭圆C2与抛物线C2在x轴上方的交点为P.
(1)当m=1时,求椭圆C2的方程;
(2)延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动,当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1、F2为焦点,离心率e=
12
的椭圆C2与抛物线C1在x轴上方的一个交点为P.
(1)当m=1时,求椭圆的方程及其右准线的方程;
(2)是否存在实数m,使得△PF1F2的边长是连续的自然数,若存在,求出这样的实数m;若不存在,请说明理由;
(3)在(1)的条件下,直线l经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2,如果以线段A1A2为直径作圆,试判断点P与圆的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案