精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,则不等式f(log${\;}_{\frac{1}{2}}$(x-1))+f(2-x)>0的解集为(  )
A.(2,3)B.(1,3)C.(0,2)D.(1,2)

分析 先确定f(x)的奇偶性,单调性,将原不等式转化为解不等式:log2(x-1)+(x-2)<0,再构造函数得出解集.

解答 解:先判断f(x)的奇偶性,f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{{1-2}^{x}}{1+{2}^{x}}$=-f(x),即f(x)为R上的奇函数,
再判断f(x)的单调性,f(x)=$\frac{2^x-1}{2^x+1}$=1-$\frac{2}{2^x+1}$,即f(x)为R上的单调递增函数,
因此,不等式f($lo{g}_{\frac{1}{2}}$(x-1))+f(2-x)>0可化为:
f[$lo{g}_{\frac{1}{2}}$(x-1)]>f(x-2),所以,$lo{g}_{\frac{1}{2}}$(x-1)>x-2,
即log2(x-1)+(x-2)<0,--------------------①
构造函数,F(x)=log2(x-1)+(x-2),
该函数在定义域(1,+∞)上单调递增,且F(2)=0,
因此,当1<x<2时,F(x)<0,
所以,不等式①的解集为(1,2),
故答案为:D.

点评 本题主要考查了函数奇偶性和单调性的综合应用,涉及奇偶性和单调性的判断和证明,并通过构造函数运用单调性解不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x)是偶函数,当x≥0时,f(x)=x2-4x+3,则f(x)的单调增区间是[-2,0],[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知p:不等式ax2+2ax+1>0的解集为R;q:0<a<1.则p是q必要(充分,必要,充要)条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}满足a1=1,an=a2n-1-1(n>1),则a5=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某几何体的三视图如图所示,则该几何体的表面积为$\frac{7}{2}$$\sqrt{3}$+$\frac{\sqrt{6}}{2}$+$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知P是直线y=x+1上一点,M,N分别是圆C1:(x-3)2+(y+3)2=1与圆C2:(x+4)2+(y-4)2=1上的点则|PM|-|PN|的最大值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正四棱锥V-ABCD底面中心为O,E,F分别为VA,VC的中点,底面边长为2,高为4,建立适当的空间直角坐标系,求异面直线BE与DF所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知{$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$}为空间的单位正交基底,且$\overrightarrow{a}$=$\overrightarrow{i}$+$\overrightarrow{j}$-2$\overrightarrow{k}$,$\overrightarrow{b}$=3$\overrightarrow{i}$+2$\overrightarrow{j}$+$\overrightarrow{k}$,若m$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,则实数m的值为(  )
A.$\frac{4}{9}$B.$\frac{16}{9}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知点A(1,2),B(3,1),则线段AB的垂直平分线的斜率是2.

查看答案和解析>>

同步练习册答案