精英家教网 > 高中数学 > 题目详情

已知向量函数且最小正周期为.

(I)求函数的最大值,并写出相应的X的取值集合;

(II)在中,角A,B, C所对的边分别为a, b,c,且,c=3,,求b的值.

 

【答案】

(Ⅰ)∵m=,n=

∴∣m∣=

m·n=

.…………………………………………………4分

,解得ω=1.

∴此时(k∈Z),即(k∈Z),

即当x∈{x|,k∈Z}时,f (x)有最大值3.………………………7分

(Ⅱ)∵ f (B)=2,

∴ 由(1)知,即

于是,解得.………………………………………10分

,即 ,解得a=8,

由余弦定理得  b2=a2+c2-2accosB=49,

∴ b=7.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1+sin2x
sinx+cosx
,给出下列结论:
①f(x)的定义域为{x|x∈R且x≠2kπ-
π
4
,k∈Z}

②f(x)的值域为[-1,1];
③f(x)是周期函数,最小正周期为2π;
④f(x)的图象关于直线对称;
⑤将f(x)的图象按向量
a
=(
π
2
,0)
平移得到g(x)的图象,则g(x)为奇函数.
其中,正确的结论是
③④
③④
(将你认为正确的结论序号都写出)

查看答案和解析>>

科目:高中数学 来源:2006-2007学年上学期豫北地区高三四校数学联考试题(附答案) 题型:044

已知向量,ω>0,记函数f(x)==,已知f(x)的最小正周期为

(1)求ω的值;

(2)设△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量,函数a为常数)

(1)若的最小正周期;

(2)当时,的最小值为4,求a的值

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省绵阳市高三第二次月考文科数学试卷 题型:解答题

已知向量,函数—且最小正周斯为,

(1) 求函数,的最犬值,并写出相应的x的取值集合;

(2)在中角A,B,C所对的边分别为a,b,c且,求b的值.

 

查看答案和解析>>

同步练习册答案