精英家教网 > 高中数学 > 题目详情
4.不等式$\frac{1-x}{x}$≤0的解集为{x|x<0,或x≥1 }.

分析 不等式即即 $\left\{\begin{array}{l}{x(x-1)≥0}\\{x≠0}\end{array}\right.$,由此求得x的范围.

解答 解:不等式$\frac{1-x}{x}$≤0,即$\frac{x-1}{x}$≥0,即 $\left\{\begin{array}{l}{x(x-1)≥0}\\{x≠0}\end{array}\right.$,求得 x<0,或x≥1,
故答案为:{x|x<0,或x≥1 }.

点评 本题主要考查分式不等式的解法,一元二次不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为α=60°,β=45°,如果此时气球的高度h是10米,则河流的宽度BC=10-$\frac{10\sqrt{3}}{3}$米.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\vec a,\vec b$的夹角为60°,$|\vec a|=2,|\vec b|=1$,则$\vec a$在$\vec b$上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({b>a>0})$的左焦点关于C的一条渐近线的对称点在另一条渐近线上,则C的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,正八面体P-ABCD-Q由两个棱长都为a的正四棱锥拼接而成.
(Ⅰ)求PQ的长;
(Ⅱ)证明:四边形PAQC是正方形;
(Ⅲ)求三棱锥A-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在正棱柱ABC-A1B1C1中,D是AC的中点,AA1:AB=$\sqrt{2}$:1,则异面直线AB1与BD所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)是奇函数,当x>0时,f(x)=2x-a$-\frac{2}{x+1}$,若f(-1)=$\frac{3}{4}$,则a等于(  )
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=f(x)的图象向右平移$\frac{π}{3}$单位后与函数y=cos2x的图象重合,则y=f(x)的解析式是(  )
A.f(x)=cos(2x$+\frac{π}{3}$)B.f(x)=-cos(2x-$\frac{π}{6}$)C.f(x)=-sin(2x+$\frac{π}{6}$)D.f(x)=sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$A(\frac{1}{4},0)$,动点P到点A的距离比到直线x=-$\frac{5}{4}$的距离少 1;
(1)求点P的轨迹方程;
(2)已知M(4,0),是否存在定直线x=a,以PM为直径的圆与直线x=a的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案