精英家教网 > 高中数学 > 题目详情
如图所示,阴影部分表示的区域可用二元一次不等式组表示的
x+y-1≥0
x-2y+2≥0
x+y-1≥0
x-2y+2≥0
分析:根据图象先确定直线的方程,利用二元一次不等式表示区域,用不等式组进行表示即可.
解答:解:过(0,1)和(1,0)点的直线方程为x+y-1=0,
过(0,1),(-2,0)点的直线方程为
x
-2
+
y
1
=1
,即x-2y+2=0,
阴影部分的区域在直线x+y-1=0的上方,在直线x-2y+2=0的下方,
所以对应的不等式组为:
x+y-1≥0
x-2y+2≥0

故答案为:
x+y-1≥0
x-2y+2≥0
点评:本题主要考查二元一次不等式组表示平面区域的问题,先求出直线方程,利用区域和直线的位置关系确定不等式组即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,将y表为x的函数;
(2)求y的最大值及此时x的值;
(3)在第(2)问的条件下,设F是CD的中点,问是否存在这样的动点P,它在此棱锥的表面(包含底面ABCD)运动,且FP⊥AC.如果存在,在图中画出其轨迹并计算轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市树德中学高二(上)期中数学试卷(文科)(解析版) 题型:解答题

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,将y表为x的函数;
(2)求y的最大值及此时x的值;
(3)在第(2)问的条件下,设F是CD的中点,问是否存在这样的动点P,它在此棱锥的表面(包含底面ABCD)运动,且FP⊥AC.如果存在,在图中画出其轨迹并计算轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省成都市树德中学高二(上)期中数学试卷(文科)(解析版) 题型:解答题

一块边长为10的正方形纸片,按如图所示将阴影部分裁下,然后将余下的四个全等的等腰三角形作为侧面制作一个正四棱锥S-ABCD(底面是正方形,顶点在底面的射影是底面中心的四棱锥).
(1)过此棱锥的高以及一底边中点F作棱锥的截面(如图),设截面三角形面积为y,将y表为x的函数;
(2)求y的最大值及此时x的值;
(3)在第(2)问的条件下,设F是CD的中点,问是否存在这样的动点P,它在此棱锥的表面(包含底面ABCD)运动,且FP⊥AC.如果存在,在图中画出其轨迹并计算轨迹的长度,如果不存在,说明理由.

查看答案和解析>>

同步练习册答案