精英家教网 > 高中数学 > 题目详情

(本题15分)如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.
(I)证明:EM⊥BF;
(II)求平面 BEF 与平面ABC 所成锐二面角的余弦值.

(1)见解析;(2)

解析试题分析:(1)本小题易建立空间直角坐标系,易于用向量法求解,建系后可求出点E,M,B,F的坐标,然后利用证明即可.
(2)由于EA垂直平面ABC,所以可做为平面ABC的法向量,然后再求出平面BEF的法向量
设二面角为求解即可.
(1)
如图,以为坐标原点,垂直于所在的直线为轴建立空间直角坐标系.由已知条件得



.   ……………6分
(2)由(1)知
设平面的法向量为
,]

由已知平面,所以取面的法向量为
设平面与平面所成的锐二面角为

平面与平面所成的锐二面角的余弦值为..
考点:利用空间向量法证明异面直线垂直,求二面角.
点评:利用空间向量法证明两直线垂直,就是证明两直线的方向向量的数量积为零即可.
在利用向量法求二面角时,要先求(或找)出两个面的法向量,然后求法向量的夹角即可.
还要注意法向量的夹角可能与二面角相等也可能互补,要注意从图形上观察.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

圆柱的高是8 cm,表面积是130 π cm2,求它的底面圆半径和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,E是AC中点,且.

(1)求证:
(2)求直线BD与面ACD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

四棱锥的侧面是等边三角形,平面平面是棱的中点.

(1)求证:平面
(2)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角三角形中,边上的高,,,分别为垂足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个多面体的直观图和三视图如下:(其中分别是中点)

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题10分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出
(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,直角梯形ABCD中,∠B=90°,AD//BC,AD=1,BC=2,
∠C=60°,将该梯形绕着AB所在的直线为轴旋转一周,求该旋转体的表面积和体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四面体中,两两互相垂直,且

(1)求证:平面平面
(2)求二面角的大小;
(3)若直线与平面所成的角为,求线段的长度.

查看答案和解析>>

同步练习册答案