练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913719868.png)
是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913735932.png)
的图象上任意两点,设点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913766735.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913875909.png)
,若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232159138911118.png)
,其中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913938505.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913969435.png)
.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913985299.png)
的值;
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914047388.png)
;
(3)数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914078456.png)
中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914094511.png)
,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913969435.png)
时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914141916.png)
,设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914078456.png)
的前
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914234297.png)
项和为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914250373.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914281323.png)
的取值范围使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215914312774.png)
对一切
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215913938505.png)
都成立.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
(Ⅰ)已知|
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846152308.png)
|=4,|
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846168307.png)
|=3,(2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846152308.png)
-3
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846168307.png)
)·(2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846152308.png)
+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846168307.png)
)=61,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846152308.png)
与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846168307.png)
的夹角θ;
(Ⅱ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846418388.png)
=(2,5),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846433383.png)
=(3,1),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846449388.png)
=(6,3),在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846449388.png)
上是否存在点M,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211846511630.png)
,若存在,求出点M的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211443775965.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211443790921.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211443806569.png)
.
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211443822402.png)
及
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211443837468.png)
;
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211443837963.png)
的最小值是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211443853396.png)
,求实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211443884321.png)
的值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231688590.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231703541.png)
.
(I) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231719289.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231828297.png)
共线,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231844266.png)
的值;
(II)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231719289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231890183.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231828297.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231844266.png)
的值;
(III)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231937383.png)
时,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231719289.png)
与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203231828297.png)
夹角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823203232156299.png)
的余弦值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:填空题
设平面向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210242445288.png)
=(1,2),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210242476302.png)
=(-2,
y),若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210242492448.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210242523536.png)
=
。
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
在边长为2的正
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212545559516.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212545590564.png)
( )
A.2![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212545606318.png) | B.2 | C.-2![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212545606318.png) | D.-2 |
查看答案和解析>>
科目:高中数学
来源:不详
题型:填空题
已知A(3,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210556681344.png)
),O为原点,点P(x,y)的坐标满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232105566971297.png)
,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823210556712644.png)
取最大值时点P的坐标是_____
查看答案和解析>>