精英家教网 > 高中数学 > 题目详情

【题目】近年来我国电子商务行业迎来发展的新机遇,与此同时,相关管理部门推出了针对电商商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品好评率为,对服务好评率为,其中对商品和服务都做出好评的交易为80次.

1)是否可以在犯错误率不超过0.1%的前提下,认为商品好评与服务好评有关?

2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,并从中选择两次交易进行客户回访,求只有一次好评的概率.

注:1.

2.

【答案】(1)见解析;(2).

【解析】试题分析:(1)由已知列出关于商品和服务评价的2×2列联表,代入公式求得k2的值,对应数表得答案;
(2)采用分层抽样的方式从这200次交易中取出5次交易,则好评的交易次数为3次,不满意的次数为2次,利用枚举法得到从5次交易中,取出2次的所有取法,查出其中只有一次好评的情况数,然后利用古典概型概率计算公式求得只有一次好评的概率.

试题解析:

(1)由题意可得关于商品评价和服务评价的列联表:

对服务好评

对服务不满意

合计

对商品好评

80

40

120

对商品不满意

70

10

80

合计

150

50

200

所以

所以可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关.

(2)若针对商品的好评率,采用分层抽样的方式从这200次交易中取出5次交易,则好评的交易次数为3次,不满意的次数为2次,令好评的交易为,不满意的交易为.

从5次交易中,取出2次的所有取法.共计10种情况.

其中只有一次好评的情况是,共计6种情况.

因此,只有一次好评的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知A,B,C为锐角△ABC的内角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形为等腰梯形, ,将沿折起,使得平面平面的中点,连接 (如图2).

(1)求证: ;

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,又是一个常数,已知时, 只有一个实根,当时, 有三个相异实根,给出下列命题:

有一个相同的实根;

有一个相同的实根;

的任一实根大于的任一实根;

的任一实根小于的任一实根.

其中正确命题的个数为( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1+an= ,n∈N*
(Ⅰ)求a2 , a3 , a4
(Ⅱ)猜想数列{an}的通项公式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系为极点 轴正半轴为极轴建立极坐标系的极坐标方程为直线的参数方程为为参数),直线和圆交于两点 是圆上不同于的任意一点

(1)求圆心的极坐标;

(2)求点到直线的距离的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点, 轴正半轴为极轴且取相同的单位长度建立极坐标系.已知点的参数方程为为参数),点在曲线上.

1)求在平面直角坐标系中点的轨迹方程和曲线的普通方程

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax+ ﹣1. (Ⅰ)当a=1时,求曲线f(x)在x=1处的切线方程;
(Ⅱ)当a= 时,求函数f(x)的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数g(x)=x2﹣2bx﹣ ,若对于x1∈[1,2],x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案