精英家教网 > 高中数学 > 题目详情

【题目】已知函数a0a≠1).

1)判断并证明函数fx)的奇偶性;

2)若ft2t1+ft2)<0,求实数t的取值范围.

【答案】(1)函数fx)是奇函数,证明见解析(2)答案见解析

【解析】

1)求出函数的定义域,利用奇偶性的定义判断函数fx)的奇偶性;

2)判断函数的单调性,然后通过ft2t1+ft-2)<0,求实数t的取值范围.

解:(1关于原点对称;

任意取x∈(-11),

故函数fx)是奇函数;

2)因为x∈(-11)时,单调递增

a1时,fx)单调递增;0a1时,fx)单调递减,

因为fx)是奇函数,故ft2t1+ft2)<0ft2t1)<f2t,

a1时,1t2t12t1,

0a1时,12tt2t11.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解世界杯期间某地区电视观众对《战斗吧足球》节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该节目时间的频率分布直方图:

(注:频率分布直方图中纵轴表示,例如,收看时间在分钟的频率是)

将日均收看该足球节目时间不低于40分钟的观众称为“足球迷”.

(1)根据已知条件完成下面的列联表,并据此资料判断是否可以认为“足球迷”与性别有关?如果有关,有多大把握?

非足球迷

足球迷

合计

10

55

合计

(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“足球迷”人数为.若每次抽取的结果是相互独立的,求的分布列、均值和方差

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣2ax+lnx(a∈R),x∈(1,+∞).
(1)若函数f(x)有且只有一个极值点,求实数a的取值范围;
(2)对于函数f(x)、f1(x)、f2(x),若对于区间D上的任意一个x,都有f1(x)<f(x)<f2(x),则称函数f(x)是函数f1(x)、f2(x)在区间D上的一个“分界函数”.已知f1(x)=(1﹣a2)lnx,f2(x)=(1﹣a)x2 , 问是否存在实数a,使得f(x)是函数f1(x)、f2(x)在区间(1,+∞)上的一个“分界函数”?若存在,求实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}中,已知3a5=7a10 , 且a1<0,则数列{an}前n项和Sn(n∈N*)中最小的是(
A.S7或S8
B.S12
C.S13
D.S14

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中,的中点,矩形所在的平面和平面互相垂直.

求证:平面

)设的中点为,求证:平面

)求三棱锥的体积.(只写出结果,不要求计算过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景点拟建一个扇环形状的花坛(如图所示),按设计要求扇环的周长为36米,其中大圆弧所在圆的半径为14米,设小圆弧所在圆的半径为米,圆心角为(弧度).

关于的函数关系式;

已知对花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4/米,弧线部分的装饰费用为16/米,设花坛的面积与装饰总费用之比为,求关于的函数关系式,并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A,B,C所对的边分别为a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷两枚骰子,求:

(1)点数之和为4的倍数的概率;

(2)点数之和大于5而小于10的概率;

(3)同时抛两枚骰子,求至少有一个5点或者6点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的棱长均为.点是侧棱的中点,点分别是侧面,底面的动点,且平面平面.则点的轨迹的长度为___________

查看答案和解析>>

同步练习册答案