精英家教网 > 高中数学 > 题目详情

【题目】天津市某高中团委在2019124日开展了以“学法、遵法、守法”为主题的学习活动.为检查该学校组织学生学习的效果,现从该校高一、高二、高三的学生中分别选取了4人,3人,3人作为代表进行问卷测试.具体要求:每位学生要从10个有关法律、法规的问题中随机抽出4个问题进行作答.

1)若从这10名学生中任选3人,求这3名学生分别来自三个年级的概率;

2)若这10人中的某学生能答对10道题中的7道题,另外3道题回答不对,记表示该名学生答对问题的个数,求随机变量的分布列及数学期望.

【答案】12)见解析

【解析】

1)利用组合知识以及古典概型的概率公式求解即可;

2)求出随机变量的可能取值以及相应的概率,列出分布列,计算数学期望即可.

1)从这10名学生中任选3人,共有种选法

其中这3名学生分别来自三个年级的共有种选法

则这3名学生分别来自三个年级的概率

2)由题意可知,随机变量的可能取值为

所以随机变量的分布列为

数学期望

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了人进行分析,得到如下列联表(单位:人).

经常使用

偶尔使用或不使用

合计

岁及以下

岁以上

合计

1)根据以上数据,能否在犯错误的概率不超过的前提下认为市使用共享单车的情况与年龄有关;

2)(i)现从所选取的岁以上的网友中,采用分层抽样的方法选取人,再从这人中随机选出人赠送优惠券,求选出的人中至少有人经常使用共享单车的概率;

ii)将频率视为概率,从市所有参与调查的网友中随机选取人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,椭圆与双曲线的焦点相同.

(1)求椭圆与双曲线的方程;

(2)过双曲线的右顶点作两条斜率分别为的直线,分别交双曲线于点不同于右顶点),若,求证:直线的倾斜角为定值,并求出此定值;

(3)设点,若对于直线,椭圆上总存在不同的两点关于直线对称,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下说法:

一年按365天计算,两名学生的生日相同的概率是;买彩票中奖的概率为0.001,那么买1 000张彩票就一定能中奖;乒乓球赛前,决定谁先发球,抽签方法是从1~1010个数字中各抽取1,再比较大小,这种抽签方法是公平的;昨天没有下雨,则说明昨天气象局的天气预报降水概率是90%”是错误的.

根据我们所学的概率知识,其中说法正确的序号是___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 (mR)

1)当时,

①求函数x=1处的切线方程;

②求函数上的最大,最小值.

2)若函数上单调递增,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:,直线都不是曲线的切线;

(2)若,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)用分段函数的形式表示函数f(x);

(2)在平面直角坐标系中画出函数f(x)的图象;

(3)在同一平面直角坐标系中,再画出函数g(x)= (x>0)的图象(不用列表),观察图象直接写出当x>0时,不等式f(x)> 的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图象如图所示.

(1)的最小正周期及解析式

(2)设函数在区间上的最小值.

查看答案和解析>>

同步练习册答案