精英家教网 > 高中数学 > 题目详情
已知曲线C:y=-x2+x+2关于点M(a,2a)对称的曲线为Cn,且曲线C与Cn有两个不同的交点A、B,设直线AB的斜率为k,求k的取值范围.
分析:设出曲线Cn上的任一点,利用对称性找出该点关于M的对称点,代入曲线C后整理即可得到曲线Cn的方程,
两曲线方程联立后由判别式大于0得到a的取值范围,由根与系数关系得到两个交点的横坐标的和与积,把纵坐标用横坐标表示后作差,整理后得到两点连线的斜率(用a表示),根据a的范围可得直线AB的斜率范围.
解答:解:设(x,y)为曲线Cn上的任一点,
(x,y)关于点M(a,2a)的对称点为(x0,y0),则x0=2a-x,y0=4a-y
依题意,点(x0,y0)在曲线C上∴4a-y=-(2a-x)2+2a-x+2
化简整理,得曲线Cn的方程:y=x2-(4a-1)x+4a2+2a-2
由方程组
y=-x2+x+2
y=x2-(4a-1)x+4a2+2a-2

消去y,整理得:x2-2ax+2a2+a-2=0(*)
设A(x1,y1),B(x2,y2),
x1+x2=2a,x1x2=2a2+a-2
y1=-
x
2
1
+x1+2,y2=-
x
2
2
+x2+2

两式相减,得:
y1-y2=[1-(x1+x2)](x1-x2)
x1x2
∴k=
y1-y2
x1-x2
=1-(x1+x2)=1-2a

因曲线C与Cn交于不同两点,方程*应有两不等实根,∴△=4a2-4(2a2+a-2)>0
即a2+a-2<0
解之,得:-2<a<1,-1<1-2a<5
即AB的斜率k的取值范围是-1<k<5.
点评:本题考查了直线与圆锥曲线的综合题,考查了利用代入法求曲线的方程,训练了点差法求直线的斜率,考查了学生灵活处理和解决问题的能力,是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知曲线C:y=
1
x
(x>0)
及两点A1(x1,0)和A2(x2,0),其中x2>x1>0.过A1,A2分别作x轴的垂线,交曲线C于B1,B2两点,直线B1B2与x轴交于点A3(x3,0),那么(  )
A、x1, 
x3
2
, x2
成等差数列
B、x1, 
x3
2
, x2
成等比数列
C、x1,x3,x2成等差数列
D、x1,x3,x2成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

17、已知曲线C:y=x3-x+2和点A(1,2),求过点A的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:y=
1
3
x3-x2-4x+1
,直线l:x+y+2k-1=0,当x∈[-3,3]时,直线l 恒在曲线C的上方,则实数k的取值范围是(  )
A、k>-
5
6
B、k<-
5
6
C、K<
3
4
D、K>
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河西区二模)已知曲线C:y=x2(x>0),过C上的点A1(1,1)作曲线C的切线l1交x轴于点B1,再过点B1作y轴的平行线交曲线C于点A2,再过点A2作曲线C的切线l2交x轴于点B2,再过点B2作y轴的平行线交曲线C于点A3,…,依次作下去,记点An的横坐标为an(n∈N*
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求证:anSn≤1;
(3)求证:
n
i=1
1
aiSi
4n-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知曲线C:y=
1
x
,Cny=
1
x+2-n
(n∈N*).从C上的点Qn(xn,yn)作x轴的垂线,交Cn于点Pn,再过点Pn作y轴的垂线,交C于点Qn+1(xn+1,yn+1)设,x1=1,an=xn+1-xn,bn=yn -yn+1
(1)求点Q1、Q2的坐标;
(2)求数列{an} 的通项公式;
(3)记数列{an•yn+1} 的前n项和为Sn,求证sn
1
3

查看答案和解析>>

同步练习册答案