精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,己知抛物线的焦点为,点是第一象限内抛物线上的一点,点的坐标为

1)若,求点的坐标;

2)若为等腰直角三角形,且,求点的坐标;

3)弦经过点,过弦上一点作直线的垂线,垂足为点,求证:直线与抛物线相切的一个充要条件是为弦的中点”.

【答案】123)证明见解析

【解析】

(1)因为点是第一象限内抛物线上的一点,且,设,

即可求得答案;

(2)设,由,,可得:,,因为 ,可得,结合已知,即可求得答案;

(3)因为过点,设为:,点,点,其中点,可得:,联立直线与抛物线得,结合已知条件,根据充要条件定义,即可求得答案.

1是第一象限内抛物线上的一点,且

,

解得:,.

2)设,由,

可得:,

等腰,得点在轴投影为中点,即:.

,代入①得:,(舍去)

点坐标为.

3过点

:,点,点,其中点,

可得:

联立直线与抛物线得,消掉

可得:

根据韦达定理可得:

设点处抛物线得切线为

联立直线与抛物线得:,消掉

可得:

,可得:

处切线方程为

化简得

求切线与直线得交点

可得

轴,

相切时,中点

以上各步骤,均可逆

直线与抛物线相切的一个充要条件是为弦的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)当时,若函数的两个极值点分别为,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有着中国碳谷之称的安徽省淮北市,名优特产众多,其中塔山石榴因其青皮软籽、籽粒饱满、晶莹剔透、汁多味甘而享誉天下.现调查表明,石榴的甜度与海拔、日照时长、昼夜温差有着极强的相关性,分别用表示石榴甜度与海拔、日照时长、温差的相关程度,并对它们进行量化:0表示一般,1表示良,2表示优,再用综合指标的值评定石榴的等级,若则为一级;若则为二级;若则为三级.近年来,周边各地市也开始发展石榴的种植,为了了解目前石榴在周边地市的种植情况,研究人员从不同地市随机抽取了12个石榴种植园,得到如下结果:

种植园编号

A

B

C

D

E

F

种植园编号

G

H

I

J

K

L

1)若有石榴种植园120个,估计等级为一级的石榴种植园的数量;

2)在所取样本的二级和三级石榴种植园中任取2个,表示取到三级石榴种植园的数量,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)求的单调区间;

(2)讨论零点的个数;

(3)当时,设恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点

1)求椭圆的方程;

2)求的取值范围;

3)设直线的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,点为棱的中点

1)证明:

2)若为棱上一点,满足,求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数上的最小值;

2)若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;

(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:

A.所有黄桃均以20/千克收购;

B.低于350克的黄桃以5/个收购,高于或等于350克的以9/个收购.

请你通过计算为该村选择收益最好的方案.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线与抛物线相交于两点,与圆相切于点,为线段中点,若这样的直线恰有,的取值范围是

A. B. C. D.

查看答案和解析>>

同步练习册答案