精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex﹣ex+4sin3x+1,x∈(﹣1,1),若f(1﹣a)+f(1﹣a2)>2成立,则实数a的取值范围是(
A.(﹣2,1)
B.(0,1)
C.
D.(﹣∞,﹣2)∪(1,+∞)

【答案】B
【解析】解:令g(x)=f(x)﹣1=ex﹣ex+4sin3x,

则g(﹣x)=﹣g(x),即g(x)为奇函数,

若f(1﹣a)+f(1﹣a2)>2成立,

即g(1﹣a)+g(1﹣a2)>0成立,

即g(1﹣a)>﹣g(1﹣a2)=g(a2﹣1),

∵g′(x)=ex+ex+12sin2xcosx≥0在x∈(﹣1,1)时恒成立,

故g(x)在(﹣1,1)上为增函数,

故﹣1<a2﹣1<1﹣a<1,

解得:a∈(0,1),

故选:B.

令g(x)=f(x)﹣1,则可得g(x)为奇函数,且g(x)在(﹣1,1)上为增函数,进而可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知E,F分别是棱长为1的正方体ABCD﹣A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机械厂今年进行了五次技能考核,其中甲、乙两名技术骨干得分的平均分相等,成绩统计情况如茎叶图所示(其中a是0﹣9的某个整数

(1)若该厂决定从甲乙两人中选派一人去参加技能培训,从成绩稳定性角度考虑,你认为谁去比较合适?
(2)若从甲的成绩中任取两次成绩作进一步分析,在抽取的两次成绩中,求至少有一次成绩在(90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A、B、C的对边分别为a、b、c.已知(a+c)2﹣b2=3ac
(1)求角B;
(2)当b=6,sinC=2sinA时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线C上的动点M到定点F(1,0)的距离和它到定直线x=3的距离之比是1:
(1)求曲线C的方程;
(2)过点F(1,0)的直线l与C交于A,B两点,当△ABO面积为 时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解某班学生喜爱体育运动是否与性别相关,对本班50人进行了问卷调查得到了如下的列联表:

喜爱体育运动

不喜爱体育运动

合计

男生

5

女生

10

合计

50

已知在全部女生中随机调查2人,恰好调查到的2位女生都喜爱体育运动的概率为
(1)请将上面的列联表补充完整(不用写计算过程)
(2)能偶在犯错误的概率不超过0.005的前提下认为喜爱体育运动与性别有关?说明你的理由;
下面的临界值表供参考:

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= .其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=log2x﹣3sin( x)零点的个数是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】;给定函数① ,② ,③y=|x﹣1|,④y=2x+1 , 其中在区间(0,1)上单调递减的函数序号是(
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一直线l过直线l1:3x﹣y=3和直线l2:x﹣2y=2的交点P,且与直线l3:x﹣y+1=0垂直.
(1)求直线l的方程;
(2)若直线l与圆心在x正半轴上的半径为 的圆C相切,求圆C的标准方程.

查看答案和解析>>

同步练习册答案