精英家教网 > 高中数学 > 题目详情

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行横道时,应当减速慢行;遇行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”,《中华人民共和国道路交通安全法》 第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员不“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查驾驶员不“礼让斑马线”行为与驾龄的关系,得到如下列联表:能否据此判断有的把握认为“礼让斑马线”行为与驾龄有关?

不礼让斑马线

礼让斑马线

合计

驾龄不超过1年

22

8

30

驾龄1年以上

8

12

20

合计

30

20

50

参考公式及数据:

.

(其中

【答案】(1);(2)有的把握认为“礼让斑马线”行为与驾龄关.

【解析】

(1)利用所给数据计算,求出回归系数,写出回归直线方程;

(2)由列联表中数据计算K2,对照临界值得出结论.

(1)由表中数据知,

∴所求回归直线方程为

(2)由表中数据得

根据统计有的把握认为“礼让斑马线”行为与驾龄关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点.

(1)求实数的取值范围;

(2)设,若函数的两个极值点恰为函数的两个零点,当时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某果农选取一片山地种植红柚,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:kg),获得的所有数据按照区间(40,45],(45,50],(50,55],(55,60]进行分组,得到频率分布直方图如图.已知样本中产量在区间(45,50]上的果树株数是产量在区间(50,60]上的果树株数的倍.

(1)求的值;

(2)求样本的平均数;

(3)从样本中产量在区间(50,60]上的果树里随机抽取两株,求产量在区间(55,60]上的果树至少有一株被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,上的一点.

(1)求证:平面平面

(2)若的中点,,且直线与平面所成角的正弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴的正半轴为极轴建立极坐标系.己知圆的圆心的坐标为半径为,直线的参数方程为为参数)

(Ⅰ)求圆C的极坐标方程;直线的普通方程;

(Ⅱ)若圆C和直线相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数同时满足:(1)对于定义域内的任意,有;(2)对于定义域内的任意,当时,有,则称函数理想函数.给出下列四个函数:①;②;③;④.

其中是理想函数的序号是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)当时,求曲线上的点到直线的距离的最大值;

(2)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数.

1)求a的值,并证明R上的增函数;

2)若关于t的不等式f(t22t)f(2t2k)0的解集非空,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随机抽取人对共享产品对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:

(Ⅰ)根据表中的数据,能否在犯错的概率不超过的前提下,认为对共享产品的态度与性别有关系?

Ⅱ)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取人,再从人中随机抽取人赠送超市购物券作为答谢,求恰有人是女性的概率.

参考公式 .

临界值表:

查看答案和解析>>

同步练习册答案