精英家教网 > 高中数学 > 题目详情
19.已知实数x,y满足$\left\{\begin{array}{l}{x+y+1≥0}\\{2x-y+2≥0}\end{array}\right.$,若当x=-1,y=0时,z=ax+y取得最大值,则实数a的取值范围是(  )
A.(-∞,-2]B.(-2,-1]C.(2,4)D.[1,2)

分析 由z=ax+y可得y=-ax+z,由题意作图,从而结合图象可得-a≥2,从而解得.

解答 解:由z=ax+y可得y=-ax+z,
由题意作图如下,

结合图象可知,
-a≥2,
解得a≤-2;
故选:A.

点评 本题考查了简单线性规划的应用,同时考查了数形结合的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若a=2$\sqrt{3}$-$\sqrt{11}$,b=$\sqrt{13}$-2$\sqrt{3}$,则a与b的大小关系为a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知sinB=$\frac{\sqrt{15}}{4}$,面积S△ABC=$\frac{\sqrt{15}}{4}$a2
(1)求$\frac{c}{a}$的值;
(2)若b=2,求边a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.解不等式:|x+7|-|x-2|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.$\left\{\begin{array}{l}{x≥0}\\{x+2y≥4}\\{2x+y≤4}\end{array}\right.$所表示的平面区域被直线y=kx+2分成的两部分的面积比为1:1,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知过原点和点P(m,2)(m∈R+),作直线l与单位圆:x2+y2=1相交于A,B两点,且$\overline{PA}$+$\overrightarrow{BA}$=0,则m的值是(  )
A.3B.$\sqrt{5}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={(x,y)|y=2x,x∈R},B={(x,y)|y=x2,x∈(0,+∞)},则A∩B={(2,4),(4,16)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.把下面题中的向量$\overrightarrow{b}$表示为实数与向量$\overrightarrow{a}$的积:
(1)$\overrightarrow{a}$=-2$\overrightarrow{e}$,$\overrightarrow{b}$=6$\overrightarrow{e}$;
(2)$\overrightarrow{a}$=8$\overrightarrow{e}$,$\overrightarrow{b}$=-14$\overrightarrow{e}$;
(3)$\overrightarrow{a}$=-$\frac{2}{3}$$\overrightarrow{e}$,$\overrightarrow{b}$=$\frac{1}{3}$$\overrightarrow{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设A={y|y=$\frac{{2}^{x}}{{2}^{x}+1}$,x∈R},B={y|y=$\frac{1}{3}$x+m,x∈[-1,1]},记命题p:“x∈A”,命题q:“x∈B”,若p是q的必要不充分条件,则m的取值范围是($\frac{1}{3}$,$\frac{2}{3}$).

查看答案和解析>>

同步练习册答案