精英家教网 > 高中数学 > 题目详情
经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l的方程为   
【答案】分析:引入两个截距,用截距式写出方程,代入点(-2,2)得到一个关于两个截距的方程,再用截距表示出与坐标轴所围成的三角形的面积,令其为1,得到另一个关于截距的方程,解这两个方程组成方程组,求出截距,写出方程即可.
解答:解:设所求直线方程为+=1,由已知可得解得∴2x+y+2=0或x+2y-2=0为所求.
故应填:2x+y+2=0或x+2y-2=0.
点评:考查用待定系数法求直线方程,本题先引入参数,表示出直线的方程,再根据题设的条件建立起参数的方程求参数,这是求直线方程时常用的一个思路.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设复数β=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)若β是关于t的一元二次方程t2-2t+m=0(m∈R)的一个虚根,且|β|=2,求实数m的值;
(2)设复数β满足条件|β+3|+(-1)n|β-3|=3a+(-1)na(其中n∈N*、常数a∈ (
3
2
 , 3)
),当n为奇数时,动点P(x、y)的轨迹为C1.当n为偶数时,动点P(x、y)的轨迹为C2.且两条曲线都经过点D(2,
2
)
,求轨迹C1与C2的方程;
(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于
2
3
3
,求实数x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

经过点A(2,-1),与直线x+y=1相切,且圆心在直线y=-2x上的圆的方程为
(x-1)2+(y+2)2=2
(x-1)2+(y+2)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)已知抛物线x2=2py上点(2,2)处的切线经过椭圆E:
y2
a2
+
x2
b2
=1(a>b>0)
的两个顶点.
(1)求椭圆E的方程;
(2)过椭圆E的上顶点A的两条斜率之积为-4的直线与该椭圆交于B,C两点,是否存在一点D,使得直线BC恒过该点?若存在,请求出定点D的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若△ABC的重心为G,当边BC的端点在椭圆E上运动时,求|GA|2+|GB|2+|GC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知圆C:x2+y2-2x+4y+1=0,那么与圆C有相同的圆心,且经过点(-2,2)的圆的方程是(  )

查看答案和解析>>

科目:高中数学 来源:2012年北京市会考说明:题目示例(解析版) 题型:选择题

已知圆C:x2+y2-2x+4y+1=0,那么与圆C有相同的圆心,且经过点(-2,2)的圆的方程是( )
A.(x-1)2+(y+2)2=5
B.(x-1)2+(y+2)2=25
C.(x+1)2+(y-2)2=5
D.(x+1)2+(y-2)2=25

查看答案和解析>>

同步练习册答案