精英家教网 > 高中数学 > 题目详情
3.已知函数y=f(x),x∈R,f(0)≠0,且满足f(x1)+f(x2)=2f($\frac{{x}_{1}+{x}_{2}}{2}$)f($\frac{{x}_{1}-{x}_{2}}{2}$),则函数f(x)的奇偶性为(  )
A.是奇函数而不是偶函数B.是偶函数而不是奇函数
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数

分析 先令x1=x2=0,代入得f(0)=1,再令x1=x,x2=-x,代入得f(-x)=f(x),所以该函数为偶函数.

解答 解:令x1=x2=0,代入f(x1)+f(x2)=2f($\frac{{x}_{1}+{x}_{2}}{2}$)f($\frac{{x}_{1}-{x}_{2}}{2}$)得,
2f(0)=2[f(0)]2,由于f(0)≠0,
所以f(0)=1,
再令x1=x,x2=-x,代入得,f(x)+f(-x)=2f(0)•f(x),
即f(-x)=f(x),
根据函数奇偶性的定义知,f(x)为偶函数,
故选B.

点评 本题主要考查了函数奇偶性的判断,用到了函数的特殊值和函数奇偶性的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知映射f:P→Q是从P到Q的一个函数,则P,Q的元素(  )
A.可以是点B.可以是方程C.必须是实数D.可以是三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算:
(1)$\frac{5}{6}{a}^{\frac{1}{3}{b}^{-2}}$×(-3a${\;}^{-\frac{1}{2}}$b-1)÷(4a${\;}^{\frac{2}{3}}$b-3)${\;}^{\frac{1}{2}}$;
(2)log3$\sqrt{27}$+lg4+lg25+6${\;}^{lo{g}_{4}}$2+(-2)0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别是角A,B,C所对的边,O为△ABC三边中垂线的交点.
(1)若b-c=$\frac{1}{4}$a,2sinB=3sinC,求cosA的值;
(2)若b2-2b+c2=0,求$\overrightarrow{BC}$•$\overrightarrow{AO}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}是递减数列,且an=-2n2+λn-9恒成立,则实数λ的取值范围为λ<6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-2ax+5(a>1),若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知下列四组散点图对应的样本统计数据的相关系数分别为r1,r2,r3,r4,则它们的大小关系为(  )
A.r1<r3<r4<r2B.r2<r4<r3<r1C.r4<r2<r1<r3D.r3<r1<r2<r4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知不等式(2x+y)($\frac{a}{x}+\frac{1}{y}$)≥25对任意正实数x、y恒成立,则正实数a的最小值为(  )
A.16B.12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{2}$asin(x+$\frac{π}{4}$)+b+a.
(1)当a=1时,求函数取得最大值与最小值时x的集合;
(2)当x∈[0,π]时,f(x)的值域是[3,4],求a,b的值.

查看答案和解析>>

同步练习册答案