A. | 是奇函数而不是偶函数 | B. | 是偶函数而不是奇函数 | ||
C. | 既是奇函数又是偶函数 | D. | 既不是奇函数也不是偶函数 |
分析 先令x1=x2=0,代入得f(0)=1,再令x1=x,x2=-x,代入得f(-x)=f(x),所以该函数为偶函数.
解答 解:令x1=x2=0,代入f(x1)+f(x2)=2f($\frac{{x}_{1}+{x}_{2}}{2}$)f($\frac{{x}_{1}-{x}_{2}}{2}$)得,
2f(0)=2[f(0)]2,由于f(0)≠0,
所以f(0)=1,
再令x1=x,x2=-x,代入得,f(x)+f(-x)=2f(0)•f(x),
即f(-x)=f(x),
根据函数奇偶性的定义知,f(x)为偶函数,
故选B.
点评 本题主要考查了函数奇偶性的判断,用到了函数的特殊值和函数奇偶性的定义,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | r1<r3<r4<r2 | B. | r2<r4<r3<r1 | C. | r4<r2<r1<r3 | D. | r3<r1<r2<r4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 16 | B. | 12 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com