精英家教网 > 高中数学 > 题目详情

【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:

1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.

参考数据:

【答案】1;(2)分布列详见解析,数学期望为36;总金额为7200元.

【解析】

1)计算,故服从正态分布,计算得到答案.

2的取值为18365472,计算概率得到分布列,再计算数学期望得到答案.

1

.即

,则,而,故

服从正态分布

2的取值为18365472

由题意知,

所以的分布列为

18

36

54

72

估算所需要抽奖红包的总金额为:(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面平面是边长为2的等边三角形,点的中点,底面是矩形,上一点,且.

1)若,点的中点,求证:平面平面

2)是否存在,使得直线与平面所成角的正切值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的两个数列满足.且

1)求证数列为等差数列;

2)求数列的通项公式;

3)设数列的前n项和分别为,求使得等式成立的有序数对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥SABC中,SA⊥底面ABCACABSA2ACABDE分别是ACBC的中点,FSE上,且SF2FE.

1)求证:平面SBC⊥平面SAE

2)若GDE中点,求二面角GAFE的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:

1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我国南宋数学家杨辉所著的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律.右边的数字三角形可以看作当n依次取0123,…时展开式的二项式系数,相邻两斜线间各数的和组成数列.例:,….

1)写出数列的通项公式(结果用组合数表示),无需证明;

2)猜想,与的大小关系,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过点的直线与椭圆相交于两点.

1)当直线的斜率时,求的面积;

2)当时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点与直角坐标系的原点重合,极轴与轴的正半轴重合,曲线的极坐标方程是,直线的参数方程是为参数).

1)若是圆上一动点,求点到直线的距离的最小值和最大值;

2)直线关于原点对称,且直线截曲线的弦长等于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体A-BCD中,已知平面平面BCD为正三角形,为等腰直角三角形,其中C为直角顶点,EF分别为校ACAD的中点.

1)求证:平面BEF

2)求证:平面ACD.

查看答案和解析>>

同步练习册答案