精英家教网 > 高中数学 > 题目详情
若集合A={x|x2+ax-b=0}={3,4},则a=
 
,b=
 
分析:利用集合相等得到3,4是A中的元素;利用韦达定理列出方程求出a,b的值.
解答:解:据题意知x2+ax-b=0的两个根是3,4
由韦达定理得
3+4=-a
3×4=-b

解得a=-7,b=-12
故答案为:-7;-12
点评:本题考查集合相等的定义:元素相同,考查一元二次方程的韦达定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={x|x2≤9},B={x|x2-5x-6<0},则A∪B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①函数y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则f:x→y=
1
x+1
,则对应f是从A到B的映射.
其中你认为不正确的是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•温州一模)若集合A={x|x2-2x<0},B={x|y=lg(x-1)},则A∩B为
{x|1<x<2}
{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2-|x|-6<0},B={x|
2x
≥1},求A∩CRB

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x|x2+ax+1=0,x∈R},集合B={1,2},且A∪B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案