分析 根据基本不等式得$\frac{1}{2}$[${2}^{{x}_{1}}$+${2}^{{x}_{2}}$]≥$\frac{1}{2}$•2•$\sqrt{{2}^{{x}_{1}+{x}_{2}}}$=${2}^{\frac{{x}_{1}+{x}_{2}}{2}}$,这是证明本命题的关键.
解答 证明:因为函数f(x)=2x,x1,x2是任意实数,所以,
左边=$\frac{1}{2}$[f(x1)+f(x2)]=$\frac{1}{2}$[${2}^{{x}_{1}}$+${2}^{{x}_{2}}$],
右边=f($\frac{{x}_{1}{+x}_{2}}{2}$)=${2}^{\frac{{x}_{1}+{x}_{2}}{2}}$,
根据基本不等式,
$\frac{1}{2}$[${2}^{{x}_{1}}$+${2}^{{x}_{2}}$]≥$\frac{1}{2}$•2•$\sqrt{{2}^{{x}_{1}+{x}_{2}}}$=${2}^{\frac{{x}_{1}+{x}_{2}}{2}}$,
由于x1≠x2,所以,$\frac{1}{2}$[${2}^{{x}_{1}}$+${2}^{{x}_{2}}$]>${2}^{\frac{{x}_{1}+{x}_{2}}{2}}$,
因此,左边>右边,
即:$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{x}_{1}{+x}_{2}}{2}$).
点评 本题主要考查了运用基本等式证明不等式问题,涉及到函数值的计算,和取等条件的分析,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{abc}{6s}$ | B. | $\frac{abc}{3s}$ | C. | $\frac{abc}{2s}$ | D. | $\frac{abc}{s}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com