(13分) 设椭圆的中心在原点,坐标轴为对称轴,焦点在x轴上,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为,
(1) 求此椭圆方程,并求出准线方程;
(2) 若P在左准线l上运动,求的最大值.
科目:高中数学 来源: 题型:
(本小题满分13分)设椭圆的左右焦点分别为,离心率,过分别作直线,且,分别交直线:于两点。
(Ⅰ)若,求 椭圆的方程;
(Ⅱ)当取最小值时,试探究与
的关系,并证明之.
查看答案和解析>>
科目:高中数学 来源:2014届浙江舟山二中等三校高二上学期期末联考理科数学试卷(解析版) 题型:解答题
(本题13分)设椭圆的左右焦点分别为,,上顶点为,过点与垂直的直线交轴负半轴于点,且是的中点.
(1)求椭圆的离心率;
(2)若过点的圆恰好与直线相切,求椭圆的方程;
(3)在(2)的条件下过右焦点作斜率为的直线与椭圆相交于两点,在轴上是否存在点使得以为邻边的平行四边形为菱形,如果存在,求出的取值范围,如果不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省福州市高三10月月考理科数学试卷(解析版) 题型:解答题
(本小题满分13分)设椭圆的左、右焦点分别为F1、F2,上顶点为A,在x轴上有一点B,满足且F1为BF2的中点.
(Ⅰ)求椭圆 C的离心率;
(Ⅱ)若过A、B、F2三点的圆恰好与直线相切,判断椭圆C和直线的位置关系.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年湖南省岳阳市高三第一次质量检测理科数学试卷(解析版) 题型:解答题
(本小题满分13分)设椭圆的右焦点为,直线与轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分13分)
设椭圆的焦点分别为、,直线:
交轴于点,且.
(Ⅰ)试求椭圆的方程;
(Ⅱ)过、分别作互相垂直的两直线与椭圆分别交于、、、四点(如图所示),若四边形的面积为,求的直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com