精英家教网 > 高中数学 > 题目详情
8.若不等式x2+2ax+1≥0对于一切x∈(0,$\frac{1}{2}}$]成立,则a的最小值是-$\frac{5}{4}$.

分析 不等式x2+2ax+1≥0对于一切x∈(0,$\frac{1}{2}$]恒成立,转化为a≥-$\frac{1}{2}$x-$\frac{1}{2x}$对于一切x∈(0,$\frac{1}{2}$]恒成立,求出-$\frac{1}{2}$x-$\frac{1}{2x}$的最大值即可.

解答 解:当x∈(0,$\frac{1}{2}}$]时,
不等式x2+2ax+1≥0可化为a≥-$\frac{1}{2}$x-$\frac{1}{2x}$,
设f(x)=-$\frac{1}{2}$x-$\frac{1}{2x}$,x∈(0,$\frac{1}{2}}$],
且函数f(x)在x∈(0,$\frac{1}{2}}$]上是单调增函数,
最大值是f($\frac{1}{2}$)=-$\frac{1}{2}$×$\frac{1}{2}$-$\frac{1}{2×\frac{1}{2}}$=-$\frac{5}{4}$,
∴a的最小值是-$\frac{5}{4}$.
故答案为:$-\frac{5}{4}$.

点评 本题考查了不等式的恒成立问题,也考查了函数的单调性运用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线的变化情况来决定买入或卖出股票.股民老张在研究股票的走势图时,发现一只股票的均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xOy,则股价y(元)和时间x的关系在ABC段可近似地用解析式y=asin(ωx+φ)+b(0<φ<π)来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线l:x=34对称.老张预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线l对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F.现在老张决定取点A(0,22),点B(12,19),点D(44,16)来确定解析式中的常数a,b,ω,φ,并且求得ω=$\frac{π}{72}$
(1)请你帮老张算出a,b,φ,并回答股价什么时候见顶(即求F点的横坐标)
(2)老张如能在今天以D点处的价格买入该股票3000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.“m=1”是“直线mx+y-2=0与直线x+my+1-m=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)化简求值:$\frac{{sin(π-α)cos(π+α)cos(\frac{3π}{2}+α)}}{cos(3π-α)sin(3π+α)}$;
(2)设sinα=-$\frac{{2\sqrt{5}}}{5}$,tanβ=$\frac{1}{3}$,-$\frac{π}{2}$<α<0,0<β<$\frac{π}{2}$,求α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=4EF,则$\overrightarrow{AF}•\overrightarrow{BC}$的值为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设常数a>0,若9x+$\frac{a^2}{x}$≥a2+8对一切正实数x成立,则a的取值范围为(  )
A.[2,4]B.[2,3]C.[-2,4]D.[-2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N+
(1)求an
(2)求数列{Sn}的通项公式,并求出n为何值时,Sn取得最小值?并说明理由.(参考数据:lg 2≈0.3,lg 3≈0.48).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A=(-1,2],集合B={x|x2-2ax+a2-1≤0}.若B∩∁RA=B,则实数a的取值范围(-∞,-2]∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取30名男生和20名女生,给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表:(单位:人) 
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期望E(X).
附表及公式
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案