从0,1,2,3这四个数字中一次随机取两个数字,若用这两个数字组成无重复数字的两位数,则所得两位数为偶数的概率是 .
【答案】
分析:从0,1,2,3这四个数字中一次随机取两个数字组成无重复数字的两位数,分为两类:若取出的数字不含0和取出的两个数字中有一个为0,利用排列和组合的计算公式分别计算出两位数的个数和偶数的公式,再利用古典概型的概率计算公式即可得出.
解答:解:从0,1,2,3这四个数字中一次随机取两个数字组成无重复数字的两位数,分为两类:若取出的数字不含0,共组成
=6个两位数,其中2为个位的两位数有
=2个;
若取出的两个数字中有一个为0,则0只能放在个位上,可组成
=3个两位数,且都是偶数.
由上可得所得两位数的个数为6+3=9个,其中偶数个数为2+3=5.
故所得两位数为偶数的概率P=
.
故答案为
.
点评:熟练掌握分类讨论的思想方法、古典概型的概率计算公式、排列与组合的计算公式及其意义是解题的关键.注意数字0不能放在首位.