精英家教网 > 高中数学 > 题目详情
是R上的可导函数,且满足,对任意的正实数,下列不等式恒成立的是
A.; B.
C.;   D.
B

试题分析:构造函数,即是增函数,而a>0,所以,g(a)>g(0),即,关系B。
点评:小综合题,比较大小问题,往往利用函数的单调性,而利用导数研究函数的单调性,是常用方法。本题关键是构造函数
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,试讨论函数的单调性;
(2)证明:对任意的 ,有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于实数集上的可导函数,若满足,则在区间[1,2]上必有(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数具有下列特征:,则的图形可以是下图中的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11)。
(1)求a,b的值;
(2)讨论函数f(x)的单调性。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)若,判断函数在定义域内的单调性;
(II)若函数在内存在极值,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知处取得极值
(1)求
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求实数的值;
(2)若关于的方程在区间上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数的零点的集合为{0,1},且是f(x)的一个极值点。
(1)求的值;
(2)试讨论过点P(m,0)与曲线y=f(x)相切的直线的条数。

查看答案和解析>>

同步练习册答案