精英家教网 > 高中数学 > 题目详情

【题目】是定义在R上的两个周期函数,的周期为4的周期为2,且是奇函数.时,,其中k>0.若在区间(09]上,关于x的方程8个不同的实数根,则k的取值范围是_____.

【答案】.

【解析】

分别考查函数和函数图像的性质,考查临界条件确定k的取值范围即可.

时,

为奇函数,其图象关于原点对称,其周期为4,如图,函数的图象,要使(0,9]上有8个实根,只需二者图象有8个交点即可.

时,函数的图象有2个交点;

时,的图象为恒过点(-20)的直线,只需函数的图象有6个交点.图象相切时,圆心(10)到直线的距离为1,即,得,函数的图象有3个交点;当过点(1,1)时,函数的图象有6个交点,此时,得.

综上可知,满足(0,9]上有8个实根的k的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为直角梯形,,平面底面.

1)求证:平面与平面不垂直;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个角形海湾(常数为锐角).拟用长度为为常数)的围网围成一个养殖区,有以下两种方案可供选择:方案一:如图1,围成扇形养殖区,其中;方案二:如图2,围成三角形养殖区,其中.

1)求方案一中养殖区的面积

2)求方案二中养殖区的最大面积(用表示);

3)为使养殖区的面积最大,应选择何种方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据说,年过半百的笛卡尔担任瑞典一小公国的公主克里斯蒂娜的数学老师,日久生情,彼此爱慕,其父国王知情后大怒,将笛卡尔流放回法国,并软禁公主,笛卡尔回法国后染上黑死病,连连给公主写信,死前最后一封信只有一个公式:国王不懂,将这封信交给了公主,公主用笛卡尔教她的坐标知识,画出了这个图形心形线”.明白了笛卡尔的心意,登上了国王宝座后,派人去寻笛卡尔,其逝久矣(仅是一个传说).心形线是由一个圆上的一个定点,当该圆绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名.在极坐标系中,方程表示的曲线就是一条心形线,如图,以极轴所在直线为轴,极点为坐标原点的直角坐标系中,已知曲线的参数方程为为参数).

1)求曲线的极坐标方程;

2)若曲线相交于三点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点为别为F1F2,且过点

1)求椭圆的标准方程;

2)如图,点A为椭圆上一位于x轴上方的动点,AF2的延长线与椭圆交于点BAO的延长线与椭圆交于点C,求ABC面积的最大值,并写出取到最大值时直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数满足:(1)对任意,恒有成立;(2)当时,.给出如下结论:

①对任意,有

②函数的值域为

③存在,使得

函数在区间上单调递减的充要条件是存在,使得”.

上述结论正确有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|2x1|a

1)当a1时,解不等式fx)>x+1

2)若存在实数x,使得fxfx+1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形的对角线交于点O,点分别在上,于点. 沿折到的位置,.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案