分析 设圆心C(a,b),设圆半径r,利用勾股定理列出方程组,求出圆C的半径,由此能求出圆的面积.
解答 解:∵两直线l1:$\sqrt{3}x-y+2=0,{l_2}:\sqrt{3}$x-y-10=0截圆C所得的弦长均为2,
∴设圆心C(a,b),设圆半径r,
则$\left\{\begin{array}{l}{{r}^{2}-(\frac{|\sqrt{3}a-b+2|}{2})^{2}=1}\\{{r}^{2}-(\frac{|\sqrt{3}a-b-10}{2})^{2}=1}\end{array}\right.$,解得$\sqrt{3}a-b=4,{r}^{2}=10$,
∴圆C的面积S=πr2=10π.
故答案为:10π.
点评 本题考查圆的面积的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用.
科目:高中数学 来源: 题型:选择题
A. | y=cos(2x+$\frac{π}{3}$) | B. | y=cos(2x-$\frac{π}{3}$) | C. | y=cos($\frac{1}{2}$x+$\frac{π}{3}$) | D. | y=cos($\frac{1}{2}$x-$\frac{π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(a)<f(b)<f(c) | B. | f(c)<f(b)<f(a) | C. | f(c)<f(a)<f(b) | D. | f(b)<f(a)<f(c) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-5,5) | B. | (-2,2) | C. | (-$\sqrt{7}$,$\sqrt{7}$) | D. | (-$\sqrt{3}$,$\sqrt{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com