精英家教网 > 高中数学 > 题目详情
18.已知两直线l1:$\sqrt{3}x-y+2=0,{l_2}:\sqrt{3}$x-y-10=0截圆C所得的弦长均为2,则圆C的面积是10π.

分析 设圆心C(a,b),设圆半径r,利用勾股定理列出方程组,求出圆C的半径,由此能求出圆的面积.

解答 解:∵两直线l1:$\sqrt{3}x-y+2=0,{l_2}:\sqrt{3}$x-y-10=0截圆C所得的弦长均为2,
∴设圆心C(a,b),设圆半径r,
则$\left\{\begin{array}{l}{{r}^{2}-(\frac{|\sqrt{3}a-b+2|}{2})^{2}=1}\\{{r}^{2}-(\frac{|\sqrt{3}a-b-10}{2})^{2}=1}\end{array}\right.$,解得$\sqrt{3}a-b=4,{r}^{2}=10$,
∴圆C的面积S=πr2=10π.
故答案为:10π.

点评 本题考查圆的面积的求法,是基础题,解题时要认真审题,注意圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.先把函数y=cosx的图象上所有点向右平移$\frac{π}{3}$个单位,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的函数图象的解析式为(  )
A.y=cos(2x+$\frac{π}{3}$)B.y=cos(2x-$\frac{π}{3}$)C.y=cos($\frac{1}{2}$x+$\frac{π}{3}$)D.y=cos($\frac{1}{2}$x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}满足a3=5,a5+a7=22,等差数列{an}的前n项和Sn
(Ⅰ)求数列{an}的通项an和前n项和Sn
(Ⅱ)若bn=2nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某工厂生产甲、乙、丙三种不同型号的产品,产品数量之比依次为5:2:3,现用分层抽样的方法抽出一个容量为n的样本,样本中甲型号产品共15件,那么样本容量n=30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知:p:y=-(21+8m-m2x为减函数,q:x2-2x+1-m2≤0(m>0),若?p是?q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=e|x|-$\frac{1}{{x}^{2}}$,设a=sin2,b=cos2,c=tan2,则(  )
A.f(a)<f(b)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}的公比为3,且a1+a3=10,则a2a3a4的值为(  )
A.27B.81C.243D.729

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线y=x+m与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有两个公共点,则m的取值范围是(  )
A.(-5,5)B.(-2,2)C.(-$\sqrt{7}$,$\sqrt{7}$)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地区至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有30种.

查看答案和解析>>

同步练习册答案