精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知圆和圆.

(1)若直线过点,且与圆相切,求直线的方程;

(2)若直线过点,且被圆截得的弦长为,求直线的方程.

【答案】(1);(2).

【解析】

(1)分类讨论,利用点到直线的距离等于半径,求出,即可求直线的方程;(2)由题意直线的斜率存在的方程为根据直线和圆相交的弦长公式设出直线斜率,根据半弦长、半径、弦心距满足勾股定理,解方程求出值,代入即得直线的方程.

(1)直线斜率不存在时,直线满足题意;

直线斜率存在时,设直线方程为,即.

∵直线与圆相切

∴圆心到直线的距离为

∴直线的方程为

(2)由题意直线的斜率存在的方程为,即.

的半径为2,设圆的圆心到直线的距离为.

∵直线被圆截得的弦长为

∴圆的圆心到直线的距离为,即.

,即.

∴直线的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E: (a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E的离心率为 ,过点M(m,0)(m> )做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P( ,0),且 为定值.
(1)求椭圆E的方程;
(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某种农作物在特定温度下要求最高温度满足:的生长状况某农学家需要在十月份去某地进行为期十天的连续观察试验现有关于该地区10月份历年10月份日平均最高温度和日平均最低温度单位:的记录如下:

根据本次试验目的和试验周期写出农学家观察试验的起始日期

设该地区今年10月上旬101日至1010的最高温度的方差和最低温度的方差分别为估计的大小?直接写出结论即可

10月份31天中随机选择连续三天求所选3天每天日平均最高温度值[2730]之间的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且Sn=2an-2(nN*),在数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上

(1)求数列{an},{bn}的通项公式;

(2)记Tn=a1b1+a2b2 +anbn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条直线l1:axby+4=0,l2:(a1)x+y+b=0. 求满足下列条件的a,b值.

)l1l2且l1过点(3,1);

)l1l2且原点到这两直线的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,,就称甲乙心有灵犀”.现任意找两人玩这个游戏,则他们心有灵犀的概率为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.

(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.

(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆E: (a>b>0)的左右焦点分别为F1、F2 , D为椭圆短轴上的一个顶点,DF1的延长线与椭圆相交于G.△DGF2的周长为8,|DF1|=3|GF1|.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的左顶点A作椭圆E的两条互相垂直的弦AB、AC,试问直线BC是否恒过定点?若是,求出此定点的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案