【题目】椭圆过点,离心率为,左右焦点分别为,过点的直线交椭圆于两点。
(1)求椭圆的方程;
(2)当的面积为时,求直线的方程。
科目:高中数学 来源: 题型:
【题目】某工艺品厂要设计一个如图1所示的工艺品,现有某种型号的长方形材料如图2所示,其周长为4m,这种材料沿其对角线折叠后就出现图1的情况.如图,ABCD(AB>AD)为长方形的材料,沿AC折叠后AB'交DC于点P,设△ADP的面积为S2 , 折叠后重合部分△ACP的面积为S1 .
(Ⅰ)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(Ⅱ)求面积S2最大时,应怎样设计材料的长和宽?
(Ⅲ)求面积(S1+2S2)最大时,应怎样设计材料的长和宽?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+ |﹣|x﹣ |;
(1)作出函数f(x)的图象;
(2)根据(1)所得图象,填写下面的表格:
性质 | 定义域 | 值域 | 单调性 | 奇偶性 | 零点 |
f(x) |
(3)关于x的方程f2(x)+m|f(x)|+n=0(m,n∈R)恰有6个不同的实数解,求n的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0且a≠1,设命题p:函数y=loga(x-1)在(1,+∞)上单调递减,命题q:曲线y=x2+(a-2)x+4与x轴交于不同的两点.若“p且q”为真命题,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax﹣a﹣x+2,若g(2)=a,则f(2)=( )
A.2
B.
C.
D.a2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x+1|+|x﹣4|﹣a.
(1)当a=1时,求函数f(x)的最小值;
(2)若f(x)≥ +1对任意的实数x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且Sn=n2+n.
(1)求数列{an}的通项公式an;
(2)数列{bn}满足bn= (n∈N*),求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在矩形ABCD中,AB=3,BC=4,E,F分别在线段BC,AD上,EF∥AB,将矩形ABEF沿EF折起,记折起后的矩形为MNEF,且平面MNEF⊥平面ECDF.
(1)在线段BC是否存在一点E,使得ND⊥FC ,若存在,求出EC的长并证明;
若不存在,请说明理由.
(2)求四面体NEFD体积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com