精英家教网 > 高中数学 > 题目详情

【题目】如图,OA、OB是两条公路(近似看成两条直线), ,在∠AOB内有一纪念塔P(大小忽略不计),已知P到直线OA、OB的距离分别为PD、PE,PD=6千米,PE=12千米.现经过纪念塔P修建一条直线型小路,与两条公路OA、OB分别交于点M、N.
(1)求纪念塔P到两条公路交点O处的距离;
(2)若纪念塔P为小路MN的中点,求小路MN的长.

【答案】
(1)解:设∠POA=α,则

∵PD=6,PE=12,

,化简得

又sin2α+cos2α=1,∴

∴纪念塔P到两条公路交点O处的距离为4 千米


(2)解:设∠PMO=θ,则∠PNO= ﹣θ,

∵P为MN的中点,即PM=PN,

,解得

∴小路MN的长为24千米.


【解析】(1)设∠POA=α,分别在△OPD和△OPE中用α表示出OP,解方程即可得出α,从而求出OP的长;(2)设∠PMO=θ,分别表示出PM,PN,解方程得出θ,从而得出MN的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

(Ⅰ)求的值;

(Ⅱ)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在(﹣∞,+∞)上的增函数,实数a使得f(1﹣ax﹣x2)<f(2﹣a)对于任意x∈[0,1]都成立,则实数a的取值范围是(
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2
D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC所对的边分别为abccosB

(Ⅰ)若c2a,求的值

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P是圆O:x2+y2=1与x轴正半轴的交点,半径OA在x轴的上方,现将半径OA绕原点O逆时针旋转 得到半径OB.设∠POA=x(0<x<π),
(1)若 ,求点B的坐标;
(2)求函数f(x)的最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个多面体的直观图(图1)及三视图(图2)如图所示,其中M,N分别是AF,BC的中点

(1)求证:MN∥平面CDEF:
(2)求二面角A﹣CF﹣B的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点P在正方体ABCD﹣A1B1C1D1的面对角线BC1上运动,则下列四个结论:
①三棱锥A﹣D1PC的体积不变;
②A1P∥平面ACD1
③DP⊥BC1
④平面PDB1⊥平面ACD1
其中正确的结论的个数是(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中,内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某港湾的平面示意图如图所示, 分别是海岸线上的三个集镇, 位于的正南方向6km处, 位于的北偏东方向10km处.

(Ⅰ)求集镇 间的距离;

(Ⅱ)随着经济的发展,为缓解集镇的交通压力,拟在海岸线上分别修建码头,开辟水上航线.勘测时发现:以为圆心,3km为半径的扇形区域为浅水区,不适宜船只航行.请确定码头的位置,使得之间的直线航线最短.

查看答案和解析>>

同步练习册答案