精英家教网 > 高中数学 > 题目详情

【题目】已知命题pk2﹣8k﹣20≤0,命题q:方程1表示焦点在x轴上的双曲线.

(1)命题q为真命题,求实数k的取值范围;

(2)若命题“pq”为真,命题“pq”为假,求实数k的取值范围.

【答案】(1)(2)

【解析】

(1)命题q为真命题,由已知得,可求实数k的取值范围;

(2)根据题意得命题pq有且仅有一个为真命题,分别讨论“pq假”与“pq真”即可得出实数a的取值范围.

(1)当命题q为真时,由已知得,解得1<k<4

∴当命题q为真命题时,实数k的取值范围是1<k<4.

(2)当命题p为真时,由k2﹣8k﹣20≤0解得﹣2≤k≤10,

由题意得命题pq中有一真命题、有一假命题

当命题p为真、命题q为假时,则

解得﹣2≤k≤1或4≤k≤10.

当命题p为假、命题q为真时,则k无解.

∴实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,直线的参数方程为为参数),曲线的方程为.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系.

1)求直线和曲线的极坐标方程;

2)曲线分别交直线和曲线于点的最大值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点,点M在正方形BCC1B1内运动,且直线AM//平面A1DE,则动点M 的轨迹长度为( )

A. B. π C. 2 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点AB.

)求椭圆M的方程;

)若,求 的最大值;

)设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.C,D和点 共线,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四组函数中,表示同一函数的是

A.fx)=gx)=x2–1B.fx)=gx)=x+1

C.fx)=gx)=(2D.fx)=|x|,gt)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)试判断1的极大值点还是极小值点并说明理由

(Ⅱ)设是函数的导函数求证 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以平面直角坐标系的原点为极点,正半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.

(1)求直线和曲线的直角坐标方程,并指明曲线的形状;

(2)设直线与曲线交于两点, 为坐标原点,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:

x

1

2

3

4

f(x)

4.00

5.58

7.00

8.44

f(x)近似符合以下三种函数模型之一:f(x)=axbf(x)=2xaf(x)=logxa.

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C ,定义椭圆C相关圆方程为,若抛物线的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和其两个焦点构成直角三角形。

I)求椭圆C的方程和相关圆”E的方程;

II)过相关圆”E上任意一点P相关圆”E的切线l与椭圆C交于AB两点,O为坐标原点。

i)证明∠AOB为定值;

ii)连接PO并延长交相关圆”E于点Q,求ABQ面积的取值范围。

查看答案和解析>>

同步练习册答案