精英家教网 > 高中数学 > 题目详情
函数f(x)=x5+x-3的零点的个数是(  )
A、0B、1C、2D、3
考点:根的存在性及根的个数判断
专题:计算题,函数的性质及应用
分析:易知f(x)=x5+x-3在R上是连续的增函数,再由零点判定定理判断零点的个数即可.
解答: 解:易知f(x)=x5+x-3在R上是连续的增函数,
又由f(1)=1+1-3<0,
f(2)=32+2-3>0;
故函数f(x)=x5+x-3的零点的个数是1;
故选B.
点评:本题考查了函数的零点个数的判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设(1-2x)9=a0+a1x+a2x2+…+a9x10,则|a0|+|a1|+|a2|+…+|a9|的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A,∠B,∠C所对边分别是a,b,c,且bc=2b2+2c2-2a2,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=4x-2x+1(x∈[-2,3])的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x=
1
3
+2
2
,y=3-
2
,集合M={m|m=a+b
2
,a∈Q,b∈Q},那么x,y与集合M的关系是(  )
A、x∈M     y∈M
B、x∈M     y∉M
C、x∉M     y∈M
D、x∉M     y∉M

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,现有一块半径为2m,圆心角为90°的扇形铁皮AOB,欲从其中裁剪出一块内接五边形ONPQR,使点P在AB弧上,点M,N分别在半径OA和OB上,四边形PMON是矩形,点Q在弧AP上,R点在线段AM上,四边形PQRM是直角梯形.现有如下裁剪方案:先使矩形PMON的面积达到最大,在此前提下,再使直角梯形PQRM的面积也达到最大:求出裁剪出的五边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知AB为球O的一条直径,△BCD是球O的内接正三角形且边长为2,若三棱锥A-BCD的体积为1,则球O的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:①函数f1(x)=x+
1
x
(x>0)在(0,1)上单调递减,在[1,+∞]上单调递增;②函数f2(x)=x+
4
x
(x>0)在(0,2)上单调递减,在[2,+∞)上单调递增;③函数f3(x)=x+
9
x
(x>0)在(0,3)上单调递减,在[3,+∞)上单调递增;
现给出函数f(x)=x+
a2
x
(x>0),其中a>0.
(1)根据以上规律,写出函数f(x)的单调区间(不要求证明)
(2)若函数f(x)在区间[1,2]上是单调递增函数,求a的取值范围;
(3)若函数f(x)=x+
a2
x
≥4在区间[1,3]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={2,3,4},B={1,2,3,4,5},写出集合A∩B的所有子集,并指出其中的真子集.

查看答案和解析>>

同步练习册答案