精英家教网 > 高中数学 > 题目详情
14.如图,三棱柱ABC-A1B1C1的侧棱与底面成60°角,侧棱长与底面边长均相等,侧面B1C1CB⊥面ABC.
(1)求证:AC1⊥BC;
(2)求BA1与AC1所成的角;
(3)求CB1与平面AC1B1所成角的正弦值;
(4)求二面角C-AC1-B1的余弦值;
(5)若AB=2,求A1到平面AB1C1的距离.

分析 (1)建立坐标系,证明$\overrightarrow{A{C}_{1}}$•$\overrightarrow{BC}$=0,可得AC1⊥BC;
(2)利用$\overrightarrow{A{C}_{1}}$•$\overrightarrow{B{A}_{1}}$=0求BA1与AC1所成的角;
(3)求出平面AC1B1的法向量,求CB1与平面AC1B1所成角的正弦值;
(4)求出平面CAC1的法向量,即可求二面角C-AC1-B1的余弦值;
(5)若AB=2,平面AC1B1的法向量为$\overrightarrow{n}$=(1,0,1),$\overrightarrow{A{A}_{1}}$=(0,1,$\sqrt{3}$),即可求A1到平面AB1C1的距离.

解答 (1)证明:∵三棱柱ABC-A1B1C1的侧棱与底面成60°角,侧棱长与底面边长均相等,侧面B1C1CB⊥面ABC,∴取BC的中点O,则OC1⊥平面ABC,OA⊥BC.
建立如图所示的坐标系,设底面边长2,则A($\sqrt{3}$,0,0),C1(0,0,$\sqrt{3}$),B(0,1,0),C(0,-1,0),∴$\overrightarrow{A{C}_{1}}$=(-$\sqrt{3}$,0,$\sqrt{3}$),$\overrightarrow{BC}$=(0,-2,0),
∴$\overrightarrow{A{C}_{1}}$•$\overrightarrow{BC}$=0,
∴AC1⊥BC;
(2)解:A1($\sqrt{3}$,1,$\sqrt{3}$),∴$\overrightarrow{B{A}_{1}}$=($\sqrt{3}$,0,$\sqrt{3}$),
∴$\overrightarrow{A{C}_{1}}$•$\overrightarrow{B{A}_{1}}$=0,
∴BA1与AC1所成的角为90°;
(3)解:∵B1(0,2,$\sqrt{3}$),∴$\overrightarrow{A{B}_{1}}$=(-$\sqrt{3}$,2,$\sqrt{3}$),$\overrightarrow{C{B}_{1}}$=(0,3,$\sqrt{3}$)
设平面AC1B1的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{-\sqrt{3}x+2y+\sqrt{3}z=0}\\{-\sqrt{3}x+\sqrt{3}z=0}\end{array}\right.$,∴$\overrightarrow{n}$=(1,0,1)
∴CB1与平面AC1B1所成角的正弦值为$\frac{\sqrt{3}}{\sqrt{9+3}•\sqrt{2}}$=$\frac{\sqrt{2}}{4}$;
(4)同理可得平面CAC1的法向量为(1,-$\sqrt{3}$,1)
∴二面角C-AC1-B1的余弦值为$\frac{2}{\sqrt{2}•\sqrt{5}}$=$\frac{\sqrt{10}}{5}$;
(5)解:AB=2,平面AC1B1的法向量为$\overrightarrow{n}$=(1,0,1),$\overrightarrow{A{A}_{1}}$=(0,1,$\sqrt{3}$),
∴A1到平面AB1C1的距离$\frac{\sqrt{3}}{\sqrt{2}}$=$\frac{\sqrt{6}}{2}$.

点评 本题考查知识点,考查空间向量的运用,正确建立坐标系,求平面的法向量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知具有线性相关的两个变量x,y之间的一组数据如表:
x01234
y2.24.3t4.86.7
且回归方程是$\widehat{y}$=0.95x+2.6,则t=(  )
A.4.7B.4.6C.4.5D.4.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.己知命题P:数f(x)=ax+1在区间(-∞,+∞)上单调递增.Q:对任意实数x都有x2-ax+4>0恒成立,若“P或Q”为真,“P且Q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若高次不等式(-x3+x2+2x)(x2-1)≥0,则x的取值范围为(  )
A.(-∞,0)B.(-∞,0]C.(-∞,0]∪[1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列关系中正确的个数是(  )
①$\sqrt{2}$∈R;②0∈N*;③{-2}⊆Z,④∅={0}.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的焦距为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求适合下列条件的圆锥曲线的标准方程:
(1)焦点在直线x-2y+4=0上,且开口向上的抛物线;
(2)与双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1有公共的渐近线,且过点(3$\sqrt{2}$,0)的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=4x-2x-1-1取最小值时,自变量x的取值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若k∈R,讨论关于x的方程|x2+2x-2|=k的解的个数.

查看答案和解析>>

同步练习册答案