【题目】已知函数f(x)=ln (x+1)- -x,a∈R.
(1)当a>0时,求函数f(x)的单调区间;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
【答案】(1)见解析(2)5.
【解析】试题分析:(1)先求导数,转化研究二次函数符号变化规律:当判别式非正时,导函数不变号;当判别式大于零时,定义域上有两个根 ,导函数符号先负再正再负(2)先利用参变分离法化简不等式得,转化求函数最小值,利用导数可得有唯一极小值,也是最小值,再根据极点条件求最小值取值范围,进而可得a的最小值.
试题解析: 解 (1)f′(x)=,x>-1.
当a≥时,f′(x)≤0,∴f(x)在(-1,+∞)上单调递减.
当0<a<时,
当-1<x<时,f′(x)<0,f(x)单调递减;
当<x<时,f′(x)>0,f(x)单调递增;
当x>时,f′(x)<0,f(x)单调递减.
综上,当a≥时,f(x)的单调递减区间为(-1,+∞);
当0<a<时,f(x)的单调递减区间为,,
f(x)的单调递增区间为.
(2)原式等价于ax>(x+1)ln (x+1)+2x+1,
即存在x>0,使成立.
设,x>0,
则,x>0,
设h(x)=x-1-ln (x+1),x>0,
则h′(x)=1->0,∴h(x)在(0,+∞)上单调递增.
又h(2)<0,h(3)>0,根据零点存在性定理,可知h(x)在(0,+∞)上有唯一零点,设该零点为x0,则x0-1=ln (x0+1),且x0∈(2,3),
∴
又a>x0+2,a∈Z,∴a的最小值为5.
科目:高中数学 来源: 题型:
【题目】已知A,B,C为锐角△ABC的内角, =(sinA,sinBsinC), =(1,﹣2), ⊥ .
(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;
(2)求tanAtanBtanC的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=,AC=3, BC=2,P是△ABC内的一点.
(1)若P是等腰直角三角形PBC的直角顶点,求PA的长;
(2)若∠BPC=,设∠PCB=θ,求△PBC的面积S(θ)的解析式,并求S(θ)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E为PB的中点.
(1)求证:CE∥平面PAD;
(2)求直线CE与平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数 在(0,+∞)上为增函数,g(x)=f(x)+2
(1)求m的值,并确定f(x)的解析式;
(2)对于任意x∈[1,2],都存在x1 , x2∈[1,2],使得f(x)≤f(x1),g(x)≤g(x2),若f(x1)=g(x2),求实数t的值;
(3)若2xh(2x)+λh(x)≥0对于一切x∈[1,2]成成立,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:
(Ⅰ)该顾客中奖的概率;
(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望Eξ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以为极点, 轴正半轴为极轴建立极坐标系,圆的极坐标方程为,直线的参数方程为为参数),直线和圆交于两点, 是圆上不同于的任意一点.
(1)求圆心的极坐标;
(2)求点到直线的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com