【题目】如图,在菱形中,,是的中点,平面,且在矩形中,,.
(1)求证:;
(2)求证:平面;
(3)求二面角的大小.
【答案】(1)证明见解析(2)证明见解析(3)60°
【解析】
(1)连接,再证明平面,利用线面垂直的性质,即可证得;
(2)设与交于,连结,由已知可得四边形是平行四边形,则可证是的中位线,由线面平行的判定定理,即可证得;
(3)由于四边形是菱形,是的中点,可得,故可以为原点建立空间直角坐标系,由几何关系,可写出相应点的坐标,用向量法即可求解.
解:(1)连结,则.
由已知平面,
因为,
所以平面.
又因为平面,
所以.
(2)设与交于,连结,
由已知可得四边形是平行四边形,
所以是的中点.
因为是的中点,
所以.
又平面,
平面,
所以平面.
(3)由于四边形是菱形,是的中点,可得.
所以由几何关系可建立如图所示的空间直角坐标系,
则,,,.
所以.
设平面的法向量为.
则
所以
令,则
所以.
又因平面的法向量,
所以.
所以由上及图可知二面角的大小是60°.
科目:高中数学 来源: 题型:
【题目】下列结论中正确的个数是( ).
①在中,若,则是等腰三角形;
②在中,若 ,则
③两个向量,共线的充要条件是存在实数,使
④等差数列的前项和公式是常数项为0的二次函数.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】阅读如图判断闰年的流程图,判断公元1900年、公元2000年、公元2018年、公元2020年这四年中闰年的个数为(nMODm为n除以m的余数)( )
A.1个B.2个
C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点C是平面直角坐标系中的一个动点,过点C且与y轴垂直的直线与直线交于点M,若向量与向量垂直,其中O为坐标原点.
(1)求点C的轨迹方程E;
(2)过曲线E的焦点作互相垂直的两条直线分别交曲线E于A,B,P,Q四点,求四边形APBQ的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合,集合,,满足.
①每个集合都恰有5个元素
②
集合中元素的最大值与最小值之和称为集合的特征数,记为,则 的值不可能为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在上的函数,满足.
(1)证明:2是函数的周期;
(2)当时,,求在时的解析式,并写出在()时的解析式;
(3)对于(2)中的函数,若关于x的方程恰好有20个解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C上的点到点的距离与它到直线的距离之比为,圆O的方程为,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中,设直线AB,AC的斜率分别为;
(1)求曲线C的方程,并证明到点M的距离;
(2)求的值;
(3)记直线PQ,BC的斜率分别为、,是否存在常数,使得?若存在,求的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某产品的历史收益率的频率分布直方图如图所示.
(1)试估计该产品收益率的中位数;
(2)若该产品的售价(元)与销量(万份)之间有较强线性相关关系,从历史销售记录中抽样得到如表5组与的对应数据:
售价(元) | 25 | 30 | 38 | 45 | 52 |
销量(万份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根据表中数据算出关于的线性回归方程为,求的值;
(3)若从表中五组销量数据中随机抽取两组,记其中销量超过6万份的组数为,求的分布列及期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com