【题目】已知椭圆以坐标原点为中心,焦点在轴上,焦距为2,且经过点.
(1)求椭圆的方程;
(2)设点,点为曲线上任一点,求点到点距离的最大值;
(3)在(2)的条件下,当时,设的面积为(O是坐标原点,Q是曲线C上横坐标为a的点),以为边长的正方形的面积为,若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
【答案】(1)(2) (3) m存在最小值
【解析】
(1)根据已知求出a,b,c值,可得椭圆C的方程;(2)设P(x,y),则y2=2﹣2x2,利用两点间的距离公式可得|PA|2=(x﹣a)2+y2=(x﹣a)2+2﹣2x2,转为二次函数求最值问题;(3)由题意分别表示出S1及S2,对不等式S1≤mS2进行变量分离得到,令,通过换元t=a2+1转为二次函数求最值问题.
(1)由题意知c=1,又过点(1,0)所以b=1,故a=,则椭圆方程为.
(2)设,则
令,
所以当时在[-1,1]上是减函数,
;
当时,在上是增函数,
在上是减函数,则;
当时,在上是增函数;
所以.
(3)当时,,
.
若正数m满足条件,
则,即,
,令,
设,则,.
,
所以,当,即时,
即,.所以,m存在最小值
【另解】
由,得,
而
当且仅当,
即,等号成立,∴
从而,故m的最小值为
科目:高中数学 来源: 题型:
【题目】对定义在上的函数和常数,,若恒成立,则称为函数的一个“凯森数对”.
(1)若是的一个“凯森数对”,且,求;
(2)已知函数与的定义域都为,问它们是否存在“凯森数对”?分别给出判断并说明理由;
(3)若是的一个“凯森数对”,且当时,,求在区间上的不动点个数(函数的不动点即为方程的解).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间A为函数的一个“可等域区间”.给出下列四个函数:①;②;③;④.其中存在唯一“可等域区间”的“可等域函数”的个数是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】欧拉公式(为虚数单位,,为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数在复平面中位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知ABCD为梯形,AB∥CD,CD=2AB,M为线段PC上一点.
(1)设平面PAB∩平面PDC=l,证明:AB∥l;
(2)在棱PC上是否存在点M,使得PA∥平面MBD,若存在,请确定点M的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市坚持农业与旅游融合发展,着力做好旅游各要素,完善旅游业态,提升旅游接待能力.为了给游客提供更好的服务,旅游部门需要了解游客人数的变化规律,收集并整理了年月至年月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论正确的是( )
A.月接待游客量逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,四边形为等腰梯形, ∥, , ,四边形为正方形,平面平面.
(Ⅰ)若点是棱的中点,求证: ∥平面;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)在线段上是否存在点,使平面平面?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com